While the studies on the material interaction with mesenchymal stem cells (MSCs) have been mainly focused on the ability of materials to provide environment to regulate cell viability, proliferation or differentiation, the therapeutic effects of MSC-material constructs may result from the secretion of immunomodulatory and angiogenic cytokines from MSCs. Here, electrospun scaffolds composed of fibers in random, aligned and mesh-like patterns were fabricated, and the paracrine behavior of adipose-derived MSCs (Ad-MSCs) on the scaffolds were investigated in comparison to the cell culture via conventional microplates. It was found that the Ad-MSCs on the electrospun fibers produced significantly higher levels of anti-inflammatory and pro-angiogenic cytokines compared to those cultured on microplates. The enhanced modulatory effects of the secreted products of Ad-MSCs on fibrous electrospun scaffolds were also proven in the cultures of endothelial cells and the LPS-stimulated macrophages, with three types of scaffolds showing distinct influences on the paracrine function of Ad-MSCs. In a skin excisional wound-healing model in rat, the conditioned medium collected from the MSC-scaffold system accelerated the wound closure, promoted the macrophage recruitment and enhanced the polarization of macrophages toward the pro-healing phenotype in the wound bed. Our study demonstrates that the fibrous topography of scaffolds is a key material property that modulates the paracrine function of cells. The discovery elucidates a new aspect of material functions, laying the foundation for developing scaffold materials to promote tissue regeneration/repair through guiding the paracrine signaling network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2017.06.028 | DOI Listing |
Adv Healthc Mater
January 2025
Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition affecting around 50 million people worldwide. Bone marrow-derived mesenchymal stem cells (BMMSCs) have emerged as a promising source for cellular therapy due to their ability to differentiate into multiple cell types and their paracrine effects. However, the direct injection of BMMSCs can lead to potential unpredictable impairments, prompting a renewed interest in their paracrine effects for AD treatment.
View Article and Find Full Text PDFMol Metab
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China.
Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
National Institute for Physiological Sciences (NIPS), 5-1 Higashiyama, Myodaiji, 444-8787, Okazaki, Aichi, Japan; Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan; Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan; Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan. Electronic address:
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation mechanisms of VSOR/VRAC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!