Seasonal variations in environmental temperatures impose added stress on domestic species bred for economically important production traits. These heat-mediated stressors vary on a seasonal, daily, or spatial scale, and negatively impact behavior and reduce feed intake and growth rate, which inevitably lead to reduced herd productivity. The seasonal infertility observed in domestic swine is primarily characterized by depressed reproductive performance, which manifests as delayed puberty onset, reduced farrowing rates, and extended weaning-to-estrus intervals. Understanding the effects of heat stress at the organismal, cellular, and molecular level is a prerequisite to identifying mitigation strategies that should reduce the economic burden of compromised reproduction. In this review, we discuss the effect of heat stress on an animal's ability to maintain homeostasis in multiple systems via several hypothalamic-pituitary-end organ axes. Additionally, we discuss our understanding of epigenetic programming and how hyperthermia experienced in utero influences industry-relevant postnatal phenotypes. Further, we highlight the recent recognized mechanisms by which distant tissues and organs may molecularly communicate via extracellular vesicles, a potentially novel mechanism contributing to the heat-stress response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrd.22859 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!