Severe burn injury triggers massive alterations in stress hormone levels with a dose-dependent hypermetabolic status including increased bone resorption. This study evaluated bone microarchitecture measured by noninvasive high-resolution peripheral quantitative computed tomography (HR-pQCT). Changes of serum bone turnover markers (BTM) as well as regulators of bone signaling pathways involved in skeletal health were assessed. Standardized effect sizes as a quantitative measure regarding the impact of serum changes and the prediction of these changes on bone microarchitecture were investigated. In total, 32 male patients with a severe burn injury (median total body surface area [TBSA], 40.5%; median age 40.5 years) and 28 matched male controls (median age 38.3 years) over a period of 24 months were included. In patients who had sustained a thermal injury, trabecular and cortical bone microstructure showed a continuous decline, whereas cortical porosity (Ct.Po) and pore volume increased. Initially, elevated levels of BTM and C-reactive protein (CRP) continuously decreased over time but remained elevated. In contrast, levels of soluble receptor activator of NF-κB ligand (sRANKL) increased over time. Osteocalcin, bone-specific alkaline phosphatase (BALP), intact N-terminal type 1 procollagen propeptide (P1NP), and cross-linked C-telopeptide (CTX) acutely reflected the increase of Ct.Po at the radius (R  = 0.41), followed by the reduction of trabecular thickness at the tibia (R  = 0.28). In adult male patients, early and sustained changes of markers of bone resorption, formation and regulators of bone signaling pathways, prolonged inflammatory cytokine activities in conjunction with muscle catabolism, and vitamin D insufficiency were observed. These alterations are directly linked to a prolonged deterioration of bone microstructure. The probably increased risk of fragility fractures should be of clinical concern and subject to future interventional studies with bone-protective agents. © 2017 American Society for Bone and Mineral Research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.3211DOI Listing

Publication Analysis

Top Keywords

severe burn
12
burn injury
12
bone
11
bone turnover
8
bone resorption
8
bone microarchitecture
8
regulators bone
8
bone signaling
8
signaling pathways
8
male patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!