A supplement-free osteoclast-osteoblast co-culture for pre-clinical application.

J Cell Physiol

Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.

Published: June 2018

There is increasing demand for efficient and physiological in vitro cell culture systems suitable for testing new pharmaceutical drugs or for evaluating materials for tissue regeneration. In particular, co-cultures of two or more tissue-relevant cell types have the advantage to study the response of cells on diverse parameters in a more natural environment with respect to physiological complexity. We developed a direct bone cell co-culture system using human peripheral blood monocytes (hPBMC) and human bone marrow stromal cells (hBMSC) as osteoclast/osteoblast precursor cells, respectively, strictly avoiding external supplements for the induction of differentiation. The sophisticated direct hPBMC/hBMSC co-culture was characterized focusing on osteoclast function and was compared with two indirect approaches. Only in the direct co-culture, hPBMC were triggered by hBMSC into osteoclastogenesis and became active resorbing osteoclasts. Bisphosphonates and sulfated glycosaminoglycans were used to examine the suitability of the co-culture system for evaluating the influence of certain effectors on bone healing and bone regeneration and the contribution of each cell type thereby. The results show that the investigated substances had more pronounced effects on both osteoblasts and osteoclasts in the co-culture system than in respective monocultures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26076DOI Listing

Publication Analysis

Top Keywords

co-culture system
12
co-culture
6
supplement-free osteoclast-osteoblast
4
osteoclast-osteoblast co-culture
4
co-culture pre-clinical
4
pre-clinical application
4
application increasing
4
increasing demand
4
demand efficient
4
efficient physiological
4

Similar Publications

Construction of antibiotic-free riboflavin producer in by metabolic engineering strategies with a plasmid stabilization system.

Synth Syst Biotechnol

June 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.

Riboflavin, an important vitamin utilized in pharmaceutical products and as a feed additive, is mainly produced by metabolically engineered bacterial fermentation. However, the reliance on antibiotics in the production process leads to increased costs and safety risks. To address these challenges, an antibiotic-free riboflavin producer was constructed using metabolic engineering approaches coupled with a novel plasmid stabilization system.

View Article and Find Full Text PDF

The unexpected PD-L1 suppression function of celery-derived extracellular vesicles improves lung cancer chemotherapy efficacy.

Extracell Vesicles Circ Nucl Acids

November 2024

State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.

The article explores celery-derived extracellular vesicles (CDEVs), characterized by high cellular uptake, low immunogenicity, and high stability, as a therapeutic strategy for antitumor nanomedicines. The methods employed in this study include cell experiments such as co-culture, Western Blot, and flow cytometry. experiments were conducted in C57BL/6 tumor-bearing mice subcutaneously injected with Lewis lung carcinoma (LLC) cells.

View Article and Find Full Text PDF

Unveiling Cryptic Diversity in Hylomys: A Commentary on Recent Taxonomic Revisions.

Integr Zool

January 2025

State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China.

The genus Hylomys now comprises seven species instead of two; the Hylomys species in China should be classified as Hylomys peguensis.

View Article and Find Full Text PDF

Graded porous scaffold mediates internal fluidic environment for 3D in vitro mechanobiology.

Comput Biol Med

January 2025

Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom; Zienkiewicz Institute for Modelling Data and AI, Swansea University, Swansea, United Kingdom. Electronic address:

Most cell types are mechanosensitive, their activities such as differentiation, proliferation and apoptosis, can be influenced by the mechanical environment through mechanical stimulation. In three dimensional (3D) mechanobiological in vitro studies, the porous structure of scaffold controls the local mechanical environment that applied to cells. Many previous studies have focused on the topological design of homogeneous scaffold struts.

View Article and Find Full Text PDF

Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!