A highly debated issue in memory research is whether familiarity is supported by the parahippocampal region, especially the lateral (LEC) and the perirhinal (PER) cortices, or whether it is supported by the same brain structure as recollection: the hippocampus. One reason for this is that conflicting results have emerged regarding the contribution of the hippocampus to familiarity. This might stem from the lack of dissociation between hippocampal subfields CA1 and CA3 as these areas are involved to a different extent in processes which are pertinent to familiarity. Another reason is that empirical evidence for a contribution of the LEC is still missing. Furthermore, it is unclear whether the superficial and the deep layers of the LEC would equally contribute to this process as these layers are differentially recruited during memory retrieval which partly relies on familiarity. To identify the specific contribution of the LEC, CA1, and CA3, we imaged with cellular resolution activity in the brain of rats performing a version of a standard human memory task adapted to rats that yields judgments based on familiarity. Using this translational approach, we report that in striking contrast to CA1 and CA3, the LEC is recruited for familiarity-judgments and that its contribution is comparable to that of the PER. These results show for the first time that the LEC, specifically its deep layers, contributes to familiarity and constitute the first cellular evidence that the hippocampus does not, thus establishing that familiarity does not share the same neural substrate as recollection.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hipo.22754DOI Listing

Publication Analysis

Top Keywords

ca1 ca3
16
contribution lec
12
cellular evidence
8
familiarity
8
hippocampal subfields
8
subfields ca1
8
deep layers
8
lec
7
contribution
5
recognition memory
4

Similar Publications

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

From Cell to Organ: Exploring the Toxicological Correlation of Organophosphorus Compounds in Living System.

Toxicology

January 2025

Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi, India, 110062. Electronic address:

Malathion is an organophosphate compound widely used as an insecticide in the agriculture sector and is toxic to humans and other mammals. Although several studies have been conducted at different level in different animal models. But there is no work has been conducted on the toxicological correlation from cellular to behavioral level on surviving species model.

View Article and Find Full Text PDF

Electrophysiology-based screening identifies neuronal HtrA serine peptidase 2 (HTRA2) as a synaptic plasticity regulator participating in tauopathy.

Transl Psychiatry

January 2025

Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.

Long-term potentiation (LTP) and long-term depression (LTD) are widely used to study synaptic plasticity. However, whether proteins regulating LTP and LTD are altered in cognitive disorders and contribute to disease onset remains to be determined. Herein, we induced LTP and LTD in the hippocampal CA3-CA1 Schaffer collateral pathway, respectively, and then performed proteomic analysis of the CA1 region.

View Article and Find Full Text PDF

Photobiomodulation using an 830-nm laser alleviates hippocampal reactive gliosis and cognitive dysfunction in a mouse model of adolescent chronic alcohol exposure.

Pharmacol Biochem Behav

January 2025

Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomedical Science, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea. Electronic address:

Chronic alcoholism is known to have detrimental effects on the brain, including cognitive impairment, neurotransmitter imbalances, and brain atrophy. The hippocampus, crucial for spatial memory and cognitive functions, is particularly susceptible to alcohol-induced changes. Photobiomodulation (PBM), a non-invasive therapeutic method that utilizes red or near-infrared light, has shown promising applications in the central and peripheral nervous systems.

View Article and Find Full Text PDF

Trimethyltin chloride (TMT), an organotin compound with potent neurotoxicity, is widely used as a heat stabilizer for plastics. However, the precise pathogenic mechanism of TMT remains incompletely elucidated, and there persists a dearth of sensitive detection methodologies for early diagnosis of TMT. In this study, Sprague-Dawley rats were treated with 10 mg/kg TMT to simulate acute exposure in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!