Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The unique property of electron cryotomography (ECT) is its capability to resolve the structure of macromolecular machines in their cellular context. The integration of ECT data with high-resolution structures of purified subcomplexes and live-cell fluorescence light microscopy can generate pseudo-atomic models that lead to a mechanistic understanding across size and time scales. Recent advances in electron detection, sample thinning, data acquisition, and data processing have significantly enhanced the applicability and performance of ECT. Here we describe a detailed workflow for an ECT experiment, including cell culture, vitrification, data acquisition, data reconstruction, tomogram analysis, and subtomogram averaging. This protocol provides an entry point to the technique for students and researchers and indicates the many possible variations arising from specific target properties and the available instrumentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7033-9_27 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!