A new method for modeling dissolved phosphorus transport with the use of WaTEM/SEDEM.

Environ Monit Assess

Department of Irrigation, Drainage and Landscape Engineering, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7, 16629, Prague, Czech Republic.

Published: August 2017

This paper presents a newly-derived method for directly determining the amount of transported dissolved phosphorus by water erosion. The results of the method are compared to prediction based on enrichment ratio (as proposed by Sharpley) and average share of dissolved phosphorus (DP) in total transported phosphorus (5%) that is widely used in the Czech Republic. Four study areas (catchments of dozens of sq. kilometer) were chosen for their different characteristics (land use, average slope, average elevation, phosphorus concentration in the soil) which influence their rainfall-runoff behavior. The modeled results are compared with data measured in situ. The two methods provide similar results in intensively agriculturally used regions. Agreement among the methods was observed for three study areas with significant erosion intensity (above 4 t/ha/year). In the catchment with significantly lower erosion intensity (0.5 t/ha/year), the indirect method (Sharpley) underestimates the amount of DP transported in the watercourses. The sum of transports of suspended solids into watercourses and the average available phosphorus content in the soil determined by the Mehlich 3 method (P) are the main factors influencing the results provided by the two methods. An analysis of the impact of these factors on the difference between the results of the methods was provided. Transport of suspended solids is related to the method difference (R range from 0.37 to 0.71). However, no significant relationship was found between the difference in the results and the average P content in the soil (R range from 0.15 to 0.36).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-017-6082-4DOI Listing

Publication Analysis

Top Keywords

dissolved phosphorus
12
amount transported
8
study areas
8
erosion intensity
8
suspended solids
8
content soil
8
method
6
phosphorus
6
average
5
method modeling
4

Similar Publications

Evaluating how weather, farm management, and soil conditions impact phosphorus (P) loss from agricultural sites is essential for improving our waterways in agricultural watersheds. In this study, rainfall characteristics, manure application timing, tillage, surface condition, and soil test phosphorus (STP) were analyzed to determine their effects on total phosphorus (TP) and dissolved phosphorus (DP) loss using 125 site-years of runoff data collected by the University of Wisconsin Discovery Farms and Discovery Farms Minnesota. Three linear mixed models (LMMs) were then used to evaluate the influence of those factors on TP and DP losses: (1) a model that included all runoff events, (2) manured sites only, and (3) precipitation events only.

View Article and Find Full Text PDF

Lacustrine groundwater discharge as an important hidden source of nutrients to a large eutrophic lake: Implications for eutrophication management.

Sci Total Environ

January 2025

Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.

Lake eutrophication driven by excessive nutrient inputs has become a global issue, but the potential impact of lacustrine groundwater discharge (LGD) as a nutrient source on lake eutrophication remains largely unknown. This study assessed the contribution of LGD-derived nutrient loads and revealed their potential impact on lake eutrophication in Taihu Lake, a typical large shallow and eutrophic lake in China, based on the segmented radon mass balance model and nutrient data. The total LGD flux was estimated to be 6.

View Article and Find Full Text PDF

Critical source areas (CSAs) can act as a source of phosphorus (P) during intermittent rainfall events and contribute to dissolved P loss via runoff. Dissolved forms of P are readily accessible for plant and algal uptake; hence it is a concern in terms of the eutrophication of freshwater bodies. The potential of CSAs to release dissolved P to surface runoff upon intermittent short-term submergence caused by different rainfall events has not been studied at a field-scale in New Zealand previously.

View Article and Find Full Text PDF

Hazardous electrolyte releasement and transformation mechanism during water protected spent lithium-ion batteries crushing.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240,  PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China. Electronic address:

Wet-crushing with aqueous media protection is considered safer and more efficient than common inert-gas protected dry-crushing in preprocessing spent lithium-ion batteries (LIBs). However, it is also accompanied with the releasement and transformation of hazardous electrolyte, while the mechanisms and pollution impact yet remain unknown. Based on a self-built wet-crushing system, this topic was systematically investigated here.

View Article and Find Full Text PDF

Utility of integrated papyrus-bivalve for bioremediation of aquaculture wastewater.

Environ Sci Pollut Res Int

January 2025

Department of Environmental Management, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.

Aquaculture generates substantial amount of residual feeds and faecal matter that accumulate in the culture environment and pollute effluent-receiving water, diminishing its ecological functioning. To devise means of treating nutrient-rich aquaculture wastewater, the efficiency of integrated papyrus-bivalve mesocosms in removing nutrients was evaluated. The mesocosms were fed on water (6600 L) from one brood-stock pond and allowed to settle for 2 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!