Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The paper reports the results of measurements of trace elements concentrations in surface water samples collected at the lowland retention reservoirs of Stare Miasto and Kowalskie (Poland). The samples were collected once a month from October 2011 to November 2012. Al, As, Cd, Co, Cr, Cu, Li, Mn, Ni, Pb, Sb, V, and Zn were determined in water samples using the inductively coupled plasma with mass detection (ICP-QQQ). To assess the chemical composition of surface water, multivariate statistical methods of data analysis were used, viz. cluster analysis (CA), principal components analysis (PCA), and discriminant analysis (DA). They made it possible to observe similarities and differences in the chemical composition of water in the points of water samples collection, to uncover hidden factors accounting for the structure of the data, and to assess the impact of natural and anthropogenic sources on the content of trace elements in the water of retention reservoirs. The conducted statistical analyses made it possible to distinguish groups of trace elements allowing for the analysis of time and spatial variation of water in the studied reservoirs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493709 | PMC |
http://dx.doi.org/10.1007/s10661-017-6089-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!