Periodontal diseases manifest by the formation of deep pockets between the gingiva and teeth where multispecies bacterial biofilms flourish, causing inflammation and bone loss. Epithelial cell receptor αvβ6 integrin that regulates inflammation by activating the anti-inflammatory cytokine transforming growth factor-β1, is highly expressed in healthy junctional epithelium that connects the gingiva to the tooth enamel. However, its expression is attenuated in human periodontal disease. Moreover, Itgb6 mice display increased periodontal inflammation compared to wild-type mice. We hypothesized that bacterial biofilms present in the periodontal pockets suppress αvβ6 integrin levels in periodontal disease and that this change aggravates inflammation. To this end, we generated three-week-old multi-species oral biofilms in vitro and treated cultured gingival epithelial cells (GECs) with their extracts. The biofilm extracts caused suppression of β6 integrin expression and upregulation of pro-inflammatory cytokines, including interleukin-1β and -6. Furthermore, GECs with β6 integrin siRNA knockdown showed increased interleukin-1β expression, indicating that αvβ6 integrin-deficiency is associated with pro-inflammatory cytokine responsiveness. FSL-1, a synthetic bacterial lipopeptide, also suppressed β6 integrin expression in GECs. Therefore, biofilm components, including lipopeptides, may downregulate αvβ6 integrin expression in the pocket epithelium and thus promote epithelial cell-driven pro-inflammatory response in periodontal disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493688 | PMC |
http://dx.doi.org/10.1038/s41598-017-03619-7 | DOI Listing |
Blood
January 2025
Medical University of Vienna, Vienna, Austria.
In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
CiRA Foundation, Research and Development Center, Osaka, Japan.
Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Depeartment of Chemical and Biological Engineering, Colorado School of Mines; Quantitative Biosciences and Engineering, Colorado School of Mines;
Platelets are blood cells that play an integral role in hemostasis and the innate immune response. Platelet hyper- and hypoactivity have been implicated in metabolic disorders, increasing risk for both thrombosis and bleeding. Platelet activation and metabolism are tightly linked, with the numerous methods to measure the former but relatively few for the latter.
View Article and Find Full Text PDFJ Orthop Translat
January 2025
Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Background: Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!