Cancer Cell-Autonomous Parainflammation Mimics Immune Cell Infiltration.

Cancer Res

The Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

Published: July 2017

Parainflammation is a unique variant of inflammation, characterized by epithelial-autonomous activation of inflammatory response. Parainflammation has been shown to strongly promote mouse gut tumorigenesis upon p53 loss. In a recent study, we explored the prevalence of parainflammation in human cancer and determined its relationship to certain molecular and clinical parameters affecting treatment and prognosis. Parainflammation can be identified from a 40-gene signature and is found in both carcinoma cell lines and a variety of primary tumors, independently of tumor microenvironment. Here, we discuss the implications of our findings in analyses of tumor microenvironment, suggesting that as tumor cell gene expression may often mimic immune and inflammatory infiltration, caution should be applied when interpreting tumor expression data. We also address the connection between parainflammation and prevalence of p53 mutations in specific types of tumors, and cancer prevention by regular usage of NSAIDs. We suggest that parainflammation may serve as a novel biomarker for screening patients who may particularly benefit from NSAID treatment. .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518753PMC
http://dx.doi.org/10.1158/0008-5472.CAN-16-3383DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
parainflammation
7
cancer cell-autonomous
4
cell-autonomous parainflammation
4
parainflammation mimics
4
mimics immune
4
immune cell
4
cell infiltration
4
infiltration parainflammation
4
parainflammation unique
4

Similar Publications

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.

View Article and Find Full Text PDF

Adaptive immune cells antagonize ILC2 homeostasis via SLAMF3 and SLAMF5.

Sci Adv

January 2025

Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China.

Type 2 innate lymphoid cells (ILC2s) mainly reside in tissues with few lymphoid cells. How their tissue residency is regulated remains poorly understood. This study explores the inhibitory role of SLAM-family receptors (SFRs) on adaptive immune cells in ILC2 maintenance.

View Article and Find Full Text PDF

On-Demand Controlled Release Multi-Drugs Delivery System for Spatiotemporally Synergizing Antitumor Immunotherapy.

Adv Sci (Weinh)

January 2025

School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China.

Although cytotoxic T lymphocytes (CTLs) activation combined with programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis blockade have emerged as an effective strategy to improve immunotherapeutic potency, it remains challenging to realize the spatiotemporal synergy of these two components. Herein, the study reports an engineered bacterial-based delivery system that can simultaneously promote CTLs infiltration and control PD-L1 binding protein (PD-L1 trap) release on demand at tumor site. The drug release button of this tumor targeting system is the specific temperature, which is accomplished by dual-modified melanin nanoparticles with photothermal conversion capacity on the engineered bacterial.

View Article and Find Full Text PDF

There is a growing interest in harnessing natural compounds and bioactive phytochemicals to accelerate drug discovery and development, including in the treatment of human cancers. Receptor tyrosine kinases (RTKs) are critical regulators of many fundamental cellular processes and have been implicated in cancer pathogenesis as well as targets for anticancer drug development. The members of TAM, Tyro3, Axl, and MERTK subfamily RTKs, especially Mer, affect immune homeostasis in the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!