A novel modified physiologically relevant model for cardiac angiogenesis.

Microvasc Res

Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China. Electronic address:

Published: November 2017

Angiogenesis assays are important tools for studying both the mechanisms of cardiac angiogenesis and the potential development of therapeutic strategies to ischemic heart diseases. Currently, various assays have been used to quantitate cardiac tubule formation, yet no consensus has been reached regarding a suitable assay for evaluating the efficacy of angiogenic stimulants or inhibitors. Most in vivo angiogenesis assays are complex and difficult to interpret, whereas traditional in vitro angiogenesis models measure only one aspect of this process. To bridge the gap between in vivo and in vitro angiogenesis assays, here, we have developed a novel modified cardiac explants matrigel assay. We observed the morphology of vascular sprouts formed in three forms of cardiac angiogenesis assays then used quantitative image analyses to further compare the morphological features of vascular sprouts formed in two cardiac explants angiogenesis assays. Vascular sprouts formed in the fibronectin group were less and short, whereas those formed in the matrigel group were significantly longer, consisting of more area and branch points. Moreover, we found the benefits of this matrigel model by observing the ability of cardiac explants to form vascular sprouts under normoxia or hypoxia condition in the presence of angiogenic stimulant and inhibitor, VEGF and PEDF. In summary, the above analyses revealed that the morphology of vascular sprouts formed in this model appears more representative of myocardial capillary formation in vivo, and this accessible, reliable angiogenic assay is a more physiologically relevant assay which allows further assessment of pharmacologic compounds on cardiac angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mvr.2017.06.007DOI Listing

Publication Analysis

Top Keywords

angiogenesis assays
20
vascular sprouts
20
cardiac angiogenesis
16
sprouts formed
16
cardiac explants
12
angiogenesis
9
novel modified
8
physiologically relevant
8
cardiac
8
vitro angiogenesis
8

Similar Publications

Monotropein (Mon) is an iridoid glycosides extracted from Morinda officinalis F.C. How.

View Article and Find Full Text PDF

This pilot study investigates distinctive features within the nail-enthesis complex among Psoriatic arthritis (PsA), Psoriasis (PSO), Rheumatoid Arthrit is (RA), and Healthy Control (HC) groups, utilizing a combined approach of ultrasound (US) and nailfold videocapillaroscopy (NVC). Clinical assessments and comprehensive US and NVC evaluations of the nail-enthesis complex were conducted on 72 subjects (18 PsA, 16 PSO, 19 RA, 19 HC). Unsupervised clustering models and factor analysis were employed to identify patterns and interrelationships between US and NVC parameters.

View Article and Find Full Text PDF

Biodegradable Temporizing Matrix in Postoncological Scalp Reconstruction: A Case Series.

Plast Reconstr Surg Glob Open

January 2025

From the Department of Plastic Surgery, Hull University Teaching Hospitals, East Riding of Yorkshire, United Kingdom.

Biodegradable temporizing matrix (BTM) is a synthetic biodegradable dermal matrix that helps develop a non-skin graft amenable wound bed (eg, over tendon or bone) into a graftable wound bed, by acting as an inert scaffold for angiogenesis and formation of granulation tissue. There is currently a paucity of evidence to encourage its use in scalp defects following skin malignancy excision. This retrospective analysis aimed to evaluate the utility of BTM in this patient subset.

View Article and Find Full Text PDF

Background: Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear.

View Article and Find Full Text PDF

Background: The upregulation or delay of acute inflammation at any stage limits fat graft survival. Active endogenous inflammation resolution mechanisms and mediators are novel therapeutic tools for inflammation. This study explored the effects of supplementation of omega-3 polyunsaturated fatty acids (PUFAs) deriving specialized proresolving mediators (SPMs) on postoperative inflammation and graft survival in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!