Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper describes computer-aided design of new anti-viral agents against Vaccinia virus (VACV) potentially acting as nucleic acid intercalators. Earlier obtained experimental data for DNA intercalation affinities and activities against Vesicular stomatitis virus (VSV) have been used to build, respectively, pharmacophore and QSAR models. These models were used for virtual screening of a database of 245 molecules generated around typical scaffolds of known DNA intercalators. This resulted in 12 hits which then were synthesized and tested for antiviral activity against VaV together with 43 compounds earlier studied against VSV. Two compounds displaying high antiviral activity against VaV and low cytotoxicity were selected for further antiviral activity investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2017.06.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!