Heritable trait variation within a population of organisms is largely governed by DNA variations that impact gene transcription and protein function. Identifying genetic variants that affect complex functional traits is a primary aim of population genetics studies, especially in the context of human disease and agricultural production traits. The identification of alleles directly altering mRNA expression and thereby biological function is challenging due to difficulty in isolating direct effects of cis-acting genetic variations from indirect trans-acting genetic effects. Allele specific gene expression or allelic imbalance in gene expression (AI) occurring at heterozygous loci provides an opportunity to identify genes directly impacted by cis-acting genetic variants as indirect trans-acting effects equally impact the expression of both alleles. However, the identification of genes showing AI in the context of the expression of all genes remains a challenge due to a variety of technical and statistical issues. The current study focuses on the discovery of genes showing AI using single nucleotide polymorphisms as allelic reporters. By developing a computational and statistical process that addressed multiple analytical challenges, we ranked 5,809 genes for evidence of AI using RNA-Seq data derived from brown adipose tissue samples from a cohort of late gestation fetal lambs and then identified a conservative subgroup of 1,293 genes. Thus, AI was extensive, representing approximately 25% of the tested genes. Genes associated with AI were enriched for multiple Gene Ontology (GO) terms relating to lipid metabolism, mitochondrial function and the extracellular matrix. These functions suggest that cis-acting genetic variations causing AI in the population are preferentially impacting genes involved in energy homeostasis and tissue remodelling. These functions may contribute to production traits likely to be under genetic selection in the population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493397PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180378PLOS

Publication Analysis

Top Keywords

gene expression
12
cis-acting genetic
12
genes
9
expression allelic
8
allelic imbalance
8
brown adipose
8
adipose tissue
8
energy homeostasis
8
genetic variants
8
production traits
8

Similar Publications

Objectives: This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.

Methodology: GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.

Results: Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is a family of phenotypically myogenic paediatric cancers consisting of two major subtypes: fusion-positive (FP) RMS, most commonly involving the PAX3::FOXO1 fusion gene, formed by the fusion of paired box 3 (PAX3) and forkhead box O1 (FOXO1) genes, and fusion-negative (FN) RMS, lacking these gene fusions. In humans, DNA methylation patterns distinguish these two subtypes as well as mutation-associated subsets within these subtypes. To investigate the biological factors responsible for these methylation differences, we profiled DNA methylation in RMS tumours derived from genetically engineered mouse models (GEMMs) in which various driver mutations were introduced into different myogenic lineages.

View Article and Find Full Text PDF

Gastric Cancer Models Developed via GelMA 3D Bioprinting Accurately Mimic Cancer Hallmarks, Tumor Microenvironment Features, and Drug Responses.

Small

January 2025

Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.

Current in vitro models for gastric cancer research, such as 2D cell cultures and organoid systems, often fail to replicate the complex extracellular matrix (ECM) found in vivo. For the first time, this study utilizes a gelatin methacryloyl (GelMA) hydrogel, a biomimetic ECM-like material, in 3D bioprinting to construct a physiologically relevant gastric cancer model. GelMA's tunable mechanical properties allow for the precise manipulation of cellular behavior within physiological ranges.

View Article and Find Full Text PDF

Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.

Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!