Quantification of adsorbed biomolecules (enzymes, proteins) at the cellulose interface is a major challenge in developing eco-friendly biodiagnostics. Here, a novel methodology is developed to visualize and quantify the adsorption of antibody from solution to the cellulose-liquid interface. The concept is to deuterate cellulose by replacing all nonexchangeable hydrogens from the glucose rings with deuterium in order to enhance the scattering contrast between the cellulose film surface and adsorbed antibody molecules. Deuterated cellulose (DC) was obtained from bacterial (Gluconacetobacter xylinus strain) cellulose, which was grown in heavy water (DO) media with a deuterated glycerol as a carbon source. For comparison, hydrogenated cellulose (HC) was obtained from cellulose acetate. Both HC and DC thin films were prepared on silicon substrate by spin coating. X-ray reflectivity (XR) shows the formation of homogeneous and smooth film. Neutron reflectivity (NR) at the liquid/film interface reveals swelling of the cellulose film by a factor of 2-3× its initial thickness. An Immunoglobulin G (IgG), used as a model antibody, was adsorbed at the liquid-solid interface of cellulose (HC) and deuterated cellulose (DC) films under equilibrium and surface saturation conditions. NR measurements of the IgG antibody layer adsorbed onto the DC film can clearly be visualized, in sharp contrast in comparison to the HC film. The average thickness of the IgG adsorbed layer onto cellulose films is 127 ± 5 Å and a partial monolayer is formed. Visualization and quantification of adsorbed IgG is shown by large difference in scattering length density (SLD) between DC (7.1 × 10 Å) and IgG (4.1 × 10 Å) in DO, which enhanced the scattering contrast in NR. Quartz crystal measurements (QCM-D) were used as a complementary method to NR to quantify the adsorbed IgG over the cellulose interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.7b00593 | DOI Listing |
Heliyon
January 2025
Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia.
Cellulose nanocrystals (CNCs) are a class of materials that have received significant attention in recent years due to their unique properties and potential applications. CNCs are extracted from plant fibers and possess high strength, stiffness, and biocompatibility, making them attractive materials for use in various fields such as biomedical engineering, renewable energy, and nanotechnology. This provides an in-depth discussion of the extraction, characterization, and promising applications of CNCs.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST) PO Box 16846-13114 Tehran Iran
A magnetic-biopolymer composite of carboxymethyl cellulose (CMC), designated as FeO@CMC, was synthesized featuring remarkable stability and an active surface with a green biosynthetic method. This composite was engineered to serve as a substrate for stabilizing silver nanoparticles (Ag NPs) with enhanced functional properties. The catalytic efficacy of the nanocatalyst, incorporating Ag NPs at concentrations of 3%, 7%, and 10%, was evaluated for the reduction of the toxic compound 4-nitrophenol to the beneficial 4-aminophenol.
View Article and Find Full Text PDFFood Chem X
January 2025
Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
The stabilities and sustained-release properties of citral are significant for foods. Herein, bacterial cellulose (BC) was innovatively reported for adsorption and sustained-release of citral via gas-phase adsorption technique, and the adsorption mechanism was disclosed. BC was prepared from tobacco stem waste extract (TSWE), and better adsorption capacity (124.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Horticulture, Hebei Agricultural University, Baoding 071001, China.
Few studies have explored the impact of blue light-emitting diode (BL) irradiation combined with different storage temperatures on antioxidant defense and cell wall metabolic activities related to the quality deterioration of postharvest strawberries. This study investigates the effects of BL exposure as a non-chemical preservation strategy to improve the postharvest quality of strawberries stored at 22 °C and 8 °C. Over a 10-day storage period, BL irradiation significantly reduced respiratory and ethylene production rates, while preserving fruit firmness and increasing the contents of soluble sugar and total phenol at both temperatures.
View Article and Find Full Text PDFACS Nano
January 2025
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!