Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background/aims: Recent evidence indicates that peroxisome proliferator-activated receptor (PPAR)-γ activators exert anti-inflammatory and antioxidant actions. However, the underlying mechanisms by which these agents prevent atrial remodeling in diabetes are not completely elucidated. We sought to investigate the potential effects of pioglitazone, a PPAR-γ activator, on atrial remodeling and atrial fibrillation (AF) inducibility in diabetic rabbits.
Methods: Alloxan-induced diabetic rabbits were randomly divided into three groups: diabetes only, diabetes treated with low-dose pioglitazone (4 mg/day/kg), or diabetes treated with high-dose pioglitazone (8 mg/day/kg) (n=24 for each group). A total of 24 healthy rabbits served as controls. Eight weeks later, hemodynamic, echocardiographic, and electrophysiological parameters were recorded. Left atrial whole-cell patch-clamp studies, histological examination, and Western blot analysis were also performed.
Results: In the DM group (6/8 vs 1/8, P<.05), higher AF inducibility, increased amount of fibrosis, lower I , and higher I were observed in the DM group compared to controls. Western blot analysis showed that DM increased the expression of extracellular signal-regulated kinase 2 (ERK2), phosphorylation ERK, transforming growth factor beta-1, Toll-like receptor 4, nuclear factor-κB p50, and heat-shock protein 70. All of these electrophysiological, histological, ion current density, and protein expression changes were all reduced by pioglitazone.
Conclusion: Pioglitazone attenuates diabetes-induced structural and electrophysiological remodeling in the atria, thereby reducing the vulnerability to AF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-5922.12284 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!