The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host-parasite co-evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host-related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.14219 | DOI Listing |
Bird Conserv Int
April 2024
Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria.
The endemic Little Vermilion Flycatcher (LVF), , has suffered a drastic decline on Santa Cruz Island, where it was common 30 years ago. Currently, less than 40 individuals remain in the last remnants of natural humid forest in the Galapagos National Park on this island. This small population has low reproductive success, which is contributing to its decline in Santa Cruz.
View Article and Find Full Text PDFEnviron Entomol
June 2024
Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz, Galapagos Islands, Ecuador.
The avian vampire fly Philornis downsi (Dodge & Aitken) (Diptera: Muscidae) is native to continental South America and the Caribbean, but invasive in the Galapagos Archipelago. The larvae of P. downsi feed on the blood and tissues of the nestlings of 75% of the small land bird species that are endemic or native to Galapagos, causing high in-nest mortality and severe population declines in some species.
View Article and Find Full Text PDFGlob Chang Biol
January 2024
Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA.
Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands.
View Article and Find Full Text PDFMol Ecol
November 2023
Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA.
Host-associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response.
View Article and Find Full Text PDFJ Ornithol
February 2023
Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Vienna Austria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!