Due to its impressive optical properties, lithium niobate (LiNbO) is considered to be one of the most important ferroelectric materials. Its uses in sensing platforms require functionalization at the surface to enable the capture and quantifying of molecules. The current paper aims to demonstrate the covalent bonding of aminosilane layers to the LiNbO surface. Fourier transform infrared (FT-IR) analysis reveals the presence of an NbO-Si bond observable as a shoulder at the same wavenumber (975 cm) on the surfaces of LiNBO as well as on those of NbO, using 3-(aminopropyl)trimethoxysilane (APTMS) or 3-(aminopropyl)methyldimethoxysilane (APDMS) precursors. This covalent bonding is confirmed by the insolubility of the silane coating in dimethyl sulfoxide (DMSO). A kinetic study of the aminosilane layer growth obtained by quantitative FT-IR analysis is also carried out.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003702817698488 | DOI Listing |
Nanoscale Adv
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University Taif 21944 Saudi Arabia.
Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China.
This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315516, Ilam, Iran.
This study highlights an innovative approach to catalysis by utilizing natural asphalt as a support material for developing carbon-based catalysts. By leveraging the principles of green chemistry, the research aims to create recyclable and environmentally friendly heterogeneous catalytic systems. This aligns with the growing demand for greener technologies and the use of biocompatible materials in chemical processes.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran.
Objectives: For designing a suitable hydrogel, two crosslinked Alginate/ Carboxymethyl cellulose (Alg/CMC) hydrogel, using calcium chloride (Ca) and glutaraldehyde (GA) as crosslinking agents were synthesized and compared.
Materials And Methods: All samples were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Blood compatibility (BC), Blood clotting index (BCI), weight loss (WL), water absorption (WA), pH, and Electrochemical Impedance Spectroscopy (EIS). Cell viability and cell migration were investigated using the MTT assay and the wound scratch test, respectively.
Bioact Mater
April 2025
Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
Injectable biomaterials, such as thermosensitive chitosan (CH)-based hydrogels, present a highly translational potential in dentistry due to their minimally invasive application, adaptability to irregular defects/shapes, and ability to carry therapeutic drugs. This work explores the incorporation of azithromycin (AZI) into thermosensitive CH hydrogels for use as an intracanal medication in regenerative endodontic procedures (REPs). The morphological and chemical characteristics of the hydrogel were assessed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!