An inverse problem in spectroscopy is considered. The objective is to restore the discrete spectrum from observed spectrum data, taking into account the spectrometer's line spread function. The problem is reduced to solution of a system of linear-nonlinear equations (SLNE) with respect to intensities and frequencies of the discrete spectral lines. The SLNE is linear with respect to lines' intensities and nonlinear with respect to the lines' frequencies. The integral approximation algorithm is proposed for the solution of this SLNE. The algorithm combines solution of linear integral equations with solution of a system of linear algebraic equations and avoids nonlinear equations. Numerical examples of the application of the technique, both to synthetic and experimental spectra, demonstrate the efficacy of the proposed approach in enabling an effective enhancement of the spectrometer's resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003702817694181 | DOI Listing |
Traditional clustering and visualization approaches in human genetics often operate under frameworks that assume inherent, discrete groupings . These methods can inadvertently simplify multifaceted relationships, functioning to entrench the idea of typological groups . We introduce a network-based pipeline and visualization tool grounded in relational thinking , which constructs networks from a variety of genetic similarity metrics.
View Article and Find Full Text PDFJAMA Cardiol
January 2025
National Heart and Lung Institute, Imperial College London, United Kingdom.
Importance: Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence-enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China.
Waveform transitions have high correlation to spike wave discharges and polyspike wave discharges in seizure dynamics. This research adopts nonlinear dynamics to study the waveform transitions in a cerebral thalamo-coritcal neural network subjected to a square sensory control via discretization and mappings. The continuous non-smooth network outputs are discretized to establish implicit mapping chains or loops for stable and unstable waveform solutions.
View Article and Find Full Text PDFJ Environ Radioact
December 2024
College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610000, China; Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu, 610000, China. Electronic address:
Airborne gamma ray spectrum detection technology is an effective means to measure the concentration and spatial distribution of natural radionuclides in environmental media such as surface rocks and soil during aviation flight. Therefore, it is vital to fully explore the radiation information related to mineralization in airborne gamma spectrometry data and explore the dose distribution law of gamma radiation field of radionuclides in the detection area. This paper is based on the theoretical calculation model of ground-air interface gamma radiation field.
View Article and Find Full Text PDFMath Biosci Eng
November 2024
Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
The invasive stink bug has become an important pest of many crops, causing severe economic losses to farmers. Control of the pest mainly relies on multiple applications of broad-spectrum insecticides, undermining the integrated pest management programs and causing secondary pest outbreaks. In the native area, egg parasitoids are the main natural enemies of , among which is considered the predominant species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!