A fast high-resolution screening method for reactive surfaces is presented. Atomic force microscopy (AFM) and surface-enhanced Raman spectroscopy (SERS) are combined in one method in order to be able to obtain both morphological and chemical information about processes at a surface. In order to accurately align the AFM and SERS images, an alignment pattern on the substrate material is exploited. Subsequent SERS scans with sub-micron resolution are recorded in 30 min per scan for an area of 100 × 100 µm and are accompanied by morphological information, supplied by a fast AFM, of the same area. Hence, a complete reactivity overview is obtained within several hours with only a monolayer of reactant. To demonstrate the working principle of this method, a SERS substrate containing the alignment pattern and silver nanoparticle aggregates as catalytic sites is prepared to study the photo-catalytic reduction of p-nitrothiophenol ( p-NTP).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003702816683528 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!