Drug addiction is a chronic disease that is shaped by alterations in neuronal function within the cortical-basal ganglia-thalamic circuit. However, our understanding of how this circuit regulates drug-seeking remains incomplete, and relapse rates remain high. The midline thalamic nuclei are an integral component of the cortical-basal ganglia-thalamic circuit and are poised to mediate addiction behaviors, including relapse. It is surprising that little research has examined the contribution of midline thalamic nuclei and their efferent projections in relapse. To address this, we expressed inhibitory, G -coupled DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in a subset of the midline thalamic nuclei or in midline thalamic nuclei neurons projecting to either the nucleus accumbens or the amygdala. We examined the effect of transiently decreasing activity of these neuronal populations on cue-induced and cocaine-primed reinstatement of cocaine-seeking. Reducing activity of midline thalamic nuclei neurons attenuated both cue-induced and cocaine-primed reinstatement, but had no effect on cue-induced reinstatement of sucrose-seeking or locomotor activity. Interestingly, attenuating activity of efferent projections from the anterior portion of midline thalamic nuclei to the nucleus accumbens blocked cocaine-primed reinstatement but enhanced cue-induced reinstatement. Decreasing activity of efferent projections from either the posterior midline thalamic nuclei to the nucleus accumbens or the midline thalamic nuclei to amygdala had no effect. These results reveal a novel contribution of subsets of midline thalamic nuclei neurons in drug-seeking behaviors and suggest that modulation of midline thalamic nuclei activity may be a promising therapeutic target for preventing relapse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546988PMC
http://dx.doi.org/10.1111/ejn.13631DOI Listing

Publication Analysis

Top Keywords

midline thalamic
44
thalamic nuclei
44
efferent projections
12
nuclei neurons
12
nucleus accumbens
12
cocaine-primed reinstatement
12
midline
11
thalamic
11
nuclei
11
cortical-basal ganglia-thalamic
8

Similar Publications

Objective: The objective was to comprehensively investigate the clinical, molecular, and imaging characteristics and outcomes of H3 K27-altered diffuse midline glioma (DMG) in adults.

Methods: Retrospective chart and imaging reviews were performed in 111 adult patients with H3 K27-altered DMG from two tertiary institutions. Clinical, molecular, imaging, and survival characteristics were analyzed.

View Article and Find Full Text PDF

Objective: Dural arteriovenous fistulas (DAVFs) with deep venous drainage (DVD) (DAVFs-DVD) are characteristically associated with non-hemorrhagic neurological deficits, most notably cognitive impairment. Large studies have yet to thoroughly characterize these DAVFs. We conducted an analysis of the largest cohort of DAVFs-DVD to provide a comprehensive characterization of this specific subset.

View Article and Find Full Text PDF

[NMDA receptors in prelimbic cortex neurons projecting to paraventricular nucleus of the thalamus are associated with morphine withdrawal memory retrieval].

Sheng Li Xue Bao

December 2024

State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.

At present, the problem of drug addiction treatment mainly lies in the high relapse rate of drug addicts. Addictive drugs will bring users a strong sense of euphoria and promote drug seeking. Once the drug is withdrawn, there will be withdrawal symptoms such as strong negative emotions and uncomfortable physical reactions.

View Article and Find Full Text PDF

This mini-review explores sexual dimorphism in the ventral midline thalamus, focusing on the reuniens nucleus and its role in behavioral functions. Traditionally linked to tasks such as working memory, cognitive flexibility, fear generalization, and memory consolidation, most studies have been conducted in male rodents. Research comparing the effects of ventral midline thalamus manipulations between female and male rodents is limited.

View Article and Find Full Text PDF

A Neural Circuit From Paraventricular Nucleus of the Thalamus to the Nucleus Accumbens Mediates Inflammatory Pain in Mice.

Brain Behav

January 2025

Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China.

Article Synopsis
  • Inflammation-related pain alters pain sensitivity in mice, evidenced by reduced paw withdrawal thresholds and latencies in CFA-induced pain models.
  • Research highlights elevated c-Fos protein expression in the paraventricular nucleus of the thalamus (PVT), indicating neuron activation due to pain stimuli.
  • The study utilized optogenetics to modulate the PVT-NAc neural circuit, showing its significant role in how inflammatory pain is experienced and managed.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!