Background: Surgeons are sometimes forced to maintain uncomfortable joint positions during robotic surgery despite the high degree of instrument maneuverability. This study aimed to use an optical motion capture system to analyze the differences in posture patterns during robotic simulator tasks between surgeons at two skill levels.
Methods: Ten experienced and ten novice surgeons performed two tasks in a da Vinci Skills Simulator: Suture Sponge 1 (SP) and Tubes (TU). The participants' upper body motion during each task was captured, including the joint angles (axilla, elbow, and wrist), the percentage of time when the wrist height was lower than the elbow height (PTW), and the height of the elbow and wrist relative to the armrest.
Results: The novice group showed significantly more excess extension in both elbow angles and extension (>50°) in both wrist angles than did the experienced group. The novice group had significantly lower PTW than the experienced group on the right side in both tasks (both p < 0.001), and on the left side in SP (p < 0.001). Compared with the experienced group, the novice group had a significantly higher elbow relative to the armrest on the right side (SP, TU: p < 0.05), and a significantly lower wrist relative to the armrest on the right side (SP, TU: p < 0.05).
Conclusions: An optical motion capture system can detect the differences in posture patterns in the positional relationship between the elbow and wrist and the joint angles of the upper limb between two groups of surgeons at different skill levels during robotic simulator tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00464-017-5655-1 | DOI Listing |
Sci Rep
January 2025
Zhongyuan University of Technology, Zhengzhou, 450007, China.
This paper studies the practical prescribed-time control problem for dual-arm robots handling an object with output constraints. Firstly, by utilizing the property that the sum of internal forces in the grasping space is zero, the system model is obtained and decomposed into the contact force model and free motion model, which are orthogonal to each other. Furthermore, by combining the performance function and constraint function, the original system tracking error is transformed to a new one, whose boundedness can ensure that the original system variable converges to the predetermined range within the specified time.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Automation, "Dunarea de Jos" University of Galati, 800008 Galati, Romania.
This paper deals with a "digital twin" (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber-physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM) and a mobile visual servoing system (MVSS) mounted on the end effector. The system architecture integrates a hierarchical control system where each of the four WSs, in the MPS, is controlled by a Programable Logic Controller (PLC), all connected via Profibus DP to a central PLC.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Resource Environmental and Safety Engineering, University of South China, Hengyang 421001, China.
To solve the issue of inconvenient and dangerous manual operation during the installation and removal of the main pipe plugging plate in the steam generator in nuclear power plants, a ten-degree-of-freedom plugging robot was designed in the present study that includes a collaborative robotic arm coupled with a servo electric cylinder. By establishing a joint coordinate system for the robot model, a D-H parameter model for the plate plugging robot was established, and the forward and inverse kinematics were solved. The volume level approximate convex decomposition algorithm was used to fit the steam generator model with a convex packet, and an experimental simulation platform was constructed.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Minas Gerais (FAMINAS), Muriaé 36888-233, Brazil.
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft's steering accuracy.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Product & Systems Design Engineering, University of the Aegean, 84100 Syros, Greece.
This paper addresses the complex problem of multi-goal robot navigation, framed as an NP-hard traveling salesman problem (TSP), in environments with both static and dynamic obstacles. The proposed approach integrates a novel path planning algorithm based on the Bump-Surface concept to optimize the shortest collision-free path among static obstacles, while a Genetic Algorithm (GA) is employed to determine the optimal sequence of goal points. To manage static or dynamic obstacles, two fuzzy controllers are developed: one for real-time path tracking and another for dynamic obstacle avoidance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!