Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Darwinian evolution requires a mechanism for generation of diversity in a population, and selective differences between individuals that influence reproduction. In biology, diversity is generated by mutations and selective differences arise because of the encoded functions of the sequences (e.g., ribozymes or proteins). Here, I draw attention to a process that I will call chemical evolution, in which the diversity is generated by random chemical synthesis instead of (or in addition to) mutation, and selection acts on physicochemical properties, such as hydrolysis, photolysis, solubility, or surface binding. Chemical evolution applies to short oligonucleotides that can be generated by random polymerization, as well as by template-directed replication, and which may be too short to encode a specific function. Chemical evolution is an important stage on the pathway to life, between the stage of "just chemistry" and the stage of full biological evolution. A mathematical model is presented here that illustrates the differences between these three stages. Chemical evolution leads to much larger differences in molecular concentrations than can be achieved by selection without replication. However, chemical evolution is not open-ended, unlike biological evolution. The ability to undergo Darwinian evolution is often considered to be a defining feature of life. Here, I argue that chemical evolution, although Darwinian, does not quite constitute life, and that a good place to put the conceptual boundary between non-life and life is between chemical and biological evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00239-017-9799-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!