Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Deoxyelephantopin (DOE) is a natural bioactive sesquiterpene lactone from , a traditionally relevant herb in Chinese and Indian medicine. It has shown promising anticancer effects against a broad spectrum of cancers.
Methods: We examined the effect of DOE on growth, autophagy, apoptosis, cell cycle progression, metastasis, and various molecular signaling pathways in cancer cells, and endeavored to decipher the molecular mechanisms underlying its effect. The cytotoxicity of DOE was examined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and colony formation assays. The antimetastatic potential of DOE was identified by wound closure, as well as invasion and migration assays. The expression of mRNAs and proteins related to cytotoxicity in cancer cells induced by DOE was investigated using reverse transcription-polymerase chain reaction, flow cytometry, and Western blot analysis.
Results: DOE showed significant cytotoxicity and induced apoptosis in cancer cells. DOE promoted the autophagy of HCT 116 and K562 cells. DOE arrested cell cycle progression in the G2/M phase. DOE treatment caused activation of caspase-8, -9, -3 and -7, reactive oxygen species production, and cleavage of cleavage of poly-ADP-ribose polymerase (PARP), the markers of apoptosis. Moreover, apoptosis induction was associated with mitochondrial permeability and endoplasmic reticulum stress. Treatment of cancer cells with DOE inhibited mitogen-activated protein kinases, nuclear factor-kappa B, phosphatidylinositol 3-kinase (PI3K/Akt), and β-catenin signaling. Furthermore, treatment of DOE increased the expression of p53, phospho-Jun amino-terminal kinases (p-JNK), and p-p38 and decreased the expression of phospho-signal transducer and activator of transcription 3 (p-STAT3) and phospho-mammalian target of rapamycin (p-mTOR) in cancer cells. DOE downregulated matrix metalloproteinase (MMP-2) and MMP-9, urokinase-type plasminogen activator (uPA), and urokinase-type plasminogen activator receptor (uPAR) mRNA levels in cancer cells.
Conclusion: These findings concluded that DOE may be useful as a chemotherapeutic agent against cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478298 | PMC |
http://dx.doi.org/10.1016/j.imr.2017.03.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!