A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular mechanisms of anticancer activity of deoxyelephantopin in cancer cells. | LitMetric

Background: Deoxyelephantopin (DOE) is a natural bioactive sesquiterpene lactone from , a traditionally relevant herb in Chinese and Indian medicine. It has shown promising anticancer effects against a broad spectrum of cancers.

Methods: We examined the effect of DOE on growth, autophagy, apoptosis, cell cycle progression, metastasis, and various molecular signaling pathways in cancer cells, and endeavored to decipher the molecular mechanisms underlying its effect. The cytotoxicity of DOE was examined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and colony formation assays. The antimetastatic potential of DOE was identified by wound closure, as well as invasion and migration assays. The expression of mRNAs and proteins related to cytotoxicity in cancer cells induced by DOE was investigated using reverse transcription-polymerase chain reaction, flow cytometry, and Western blot analysis.

Results: DOE showed significant cytotoxicity and induced apoptosis in cancer cells. DOE promoted the autophagy of HCT 116 and K562 cells. DOE arrested cell cycle progression in the G2/M phase. DOE treatment caused activation of caspase-8, -9, -3 and -7, reactive oxygen species production, and cleavage of cleavage of poly-ADP-ribose polymerase (PARP), the markers of apoptosis. Moreover, apoptosis induction was associated with mitochondrial permeability and endoplasmic reticulum stress. Treatment of cancer cells with DOE inhibited mitogen-activated protein kinases, nuclear factor-kappa B, phosphatidylinositol 3-kinase (PI3K/Akt), and β-catenin signaling. Furthermore, treatment of DOE increased the expression of p53, phospho-Jun amino-terminal kinases (p-JNK), and p-p38 and decreased the expression of phospho-signal transducer and activator of transcription 3 (p-STAT3) and phospho-mammalian target of rapamycin (p-mTOR) in cancer cells. DOE downregulated matrix metalloproteinase (MMP-2) and MMP-9, urokinase-type plasminogen activator (uPA), and urokinase-type plasminogen activator receptor (uPAR) mRNA levels in cancer cells.

Conclusion: These findings concluded that DOE may be useful as a chemotherapeutic agent against cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478298PMC
http://dx.doi.org/10.1016/j.imr.2017.03.004DOI Listing

Publication Analysis

Top Keywords

cancer cells
24
cells doe
16
doe
13
molecular mechanisms
8
cancer
8
cell cycle
8
cycle progression
8
urokinase-type plasminogen
8
plasminogen activator
8
cells
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!