Background: Plant mediated green synthesis of nanoparticles is an eco-friendly and efficacious approach which finds immense application in the field of medicine. This study aimed to evaluate the cytotoxicity of platinum nanoparticles (ptNPs) synthesized through green technology against normal and different cancer cell lines.

Methods: Platinum nanoparticles were synthesized by green technology and characterized earlier. In this study we examined the cytotoxic effect of platinum nanoparticles (ptNPs) on human lung adenocarcinoma (A549), ovarian teratocarcinoma (PA-1), pancreatic cancer (Mia-Pa-Ca-2) cells and normal peripheral blood mononucleocyte (PBMC) cells and evaluate anticancer potential through induction of apoptosis on PA-1 cells if any. Cytotoxicity was evaluated using MTT assay, trypan blue dye exclusion assay and anticancer potential assessed through clonogenic assay, apoptosis assay, cell cycle analysis.

Results: We found that ptNPs exerted cytotoxic effect on cancer cell lines, whereas no cytotoxic effect was observed at highest dose on normal cells. The results showed that ptNPs had potent anticancer activities against PA-1 cell line via induction of apoptosis and cell cycle arrest.

Conclusion: Overall, these findings have proved that biosynthesized ptNPs could be potent anti-ovarian cancer drugs. Further studies are required to elucidate the molecular mechanism of ptNPs induced anti-tumor effect .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478255PMC
http://dx.doi.org/10.1016/j.imr.2017.01.006DOI Listing

Publication Analysis

Top Keywords

platinum nanoparticles
16
anticancer potential
12
induction apoptosis
12
normal cancer
8
potential induction
8
nanoparticles ptnps
8
synthesized green
8
green technology
8
cancer cell
8
cell cycle
8

Similar Publications

Dual-driven biodegradable nanomotors for enhanced cellular uptake.

J Mater Chem B

January 2025

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Synergistically Enhanced Co-Adsorption of Reactant and Hydroxyl on Platinum-Modified Copper Oxide for High-Performance HMF Oxidation.

Adv Mater

January 2025

Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China.

Electrochemical oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) provides an environmentally friendly route for producing the sustainable polymer monomer 2,5-furandicarboxylic acid (FDCA). Thus, precisely adjusting the synergistic adsorption among key reactive species, such as HMF and OH, on the carefully designed catalyst surface is essential for achieving satisfactory catalytic performance for HMF oxidation to FDCA as it is closely related to the adsorption strength and configuration of the reaction substrates. This kind of regulation will ultimately facilitate the improvement of HMF oxidation performance.

View Article and Find Full Text PDF

Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).

View Article and Find Full Text PDF

With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.

View Article and Find Full Text PDF

A next-generation STING agonist MSA-2 is a promising tumor immunotherapy strategy. However, the methods for improving the anti-tumor efficacy of MSA-2 are a lot of effort. We have demonstrated antitumor effect of platinum-modified MSA-2 (MSA-2-Pt) was better than MSA-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!