The objective of this study was to identify acute responses and chronic adaptations of supraspinatus tendon to noninjurious exercise. We hypothesized that chronic exercise (EX) increases tendon mechanical properties, and a single exercise bout increases matrix metalloproteinase (MMP) activity acutely. Rats were divided into acute or chronic EX or cage activity groups. Animals in acute EX groups were euthanized, 3, 12, 24, 48, or 72 h upon completion of a single bout of exercise (10 m/min, 1 h) on a flat treadmill. Animals in chronic EX groups walked on a flat treadmill for 3 days or 1, 2, or 8 wk. Tendon histology, MMP activity, and mechanics were measured. A single bout of exercise trended toward reducing tendon mechanical properties, but 2 or 8 wk of chronic EX increased tendon mechanics. Cell density was not affected. Cells became rounder with chronic EX. All tendons were highly organized. MMP activity decreased after a single bout of exercise and returned to baseline by 72 h. MMP activity decreased after 8 wk of chronic EX. Decreased MMP activity may indicate an anabolic instead of catabolic response in contrast to injury. Results suggest that mild, acute decreases in MMP activity and tendon mechanics following a single exercise bout lead to enhanced tendon mechanical adaptations with repeated exercise bouts. This study defines acute and chronic changes of MMP activity, mechanical properties, and histology of the rat supraspinatus tendon in response to beneficial exercise and proposes a mechanism by which acute responses translate to chronic adaptations. The line between beneficial exercise and overuse has not been elucidated. This study defines the acute and chronic temporal response to exercise of supraspinatus tendon in an in vivo model. We found that decreased matrix metalloproteinase activity and tendon mechanics after a single bout of exercise are followed by beneficial chronic adaptations of the tendon with repeated bouts. How the acute responses to exercise lead to chronic adaptations may distinguish beneficial exercise from overuse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668451 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00368.2017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!