Lung cancer incidence attributable to residential radon exposure in Alberta in 2012.

CMAJ Open

Affiliations: Department of Cancer Epidemiology and Prevention Research (Grundy, Khandwala, Poirier, Tamminen, Friedenreich, Brenner), CancerControl Alberta, Alberta Health Services, Calgary, Alta.; Telfer School of Management (Brand), University of Ottawa, Ottawa, Ont.; Department of Oncology (Friedenreich, Brenner) and Department of Community Health Sciences (Friedenreich, Brenner), Cumming School of Medicine, University of Calgary, Calgary, Alta.

Published: June 2017

Background: Radon is carcinogenic, and exposure to radon has been shown to increase the risk of lung cancer. The objective of this study was to quantify the proportion and number of lung cancer cases in Alberta in 2012 that could be attributed to residential radon exposure.

Methods: We estimated the population attributable risk of lung cancer for residential radon using radon exposure data from the Cross-Canada Survey of Radon Concentrations in Homes from 2009-2011 and data on all-cause and lung cancer mortality from Statistics Canada from 2008-2012. We used cancer incidence data from the Alberta Cancer Registry for 2012 to estimate the total number of lung cancers attributable to residential radon exposure. Estimates were also stratified by sex and smoking status.

Results: The mean geometric residential radon level in Alberta in 2011 was 71.0 Bq/m3 (geometric standard deviation 2.14). Overall, an estimated 16.6% (95% confidence interval 9.4%-29.8%) of lung cancers were attributable to radon exposure, corresponding to 324 excess attributable cancer cases. The estimated population attributable risk of lung cancer due to radon exposure was higher among those who had never smoked (24.8%) than among ever smokers (15.6%). However, since only about 10% of cases of lung cancer occur in nonsmokers, the estimated total number of excess cases was higher for ever smokers (274) than for never smokers (48).

Interpretation: With about 17% of lung cancer cases in Alberta in 2012 attributable to residential radon exposure, exposure reduction has the potential to substantially reduce Alberta's lung cancer burden. As such, home radon testing and remediation techniques represent important cancer prevention strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498175PMC
http://dx.doi.org/10.9778/cmajo.20160053DOI Listing

Publication Analysis

Top Keywords

lung cancer
36
residential radon
24
radon exposure
24
radon
13
attributable residential
12
alberta 2012
12
risk lung
12
cancer
12
cancer cases
12
lung
11

Similar Publications

Background: Interstitial lung abnormalities (ILA) are a proposed imaging concept. Fibrous ILA have a higher risk of progression and death. Clinically, computed tomography (CT) examination is a frequently used and convenient method compared with pulmonary function tests.

View Article and Find Full Text PDF

Somatic stem cell pools comprise diverse, highly specialized subsets whose individual contribution is critical for the overall regenerative function. In the bone marrow, myeloid-biased hematopoietic stem cells (myHSCs) are indispensable for replenishment of myeloid cells and platelets during inflammatory response but, at the same time, become irreversibly damaged during inflammation and aging. Here we identify an extrinsic factor, semaphorin 4A (Sema4A), which non-cell-autonomously confers myHSC resilience to inflammatory stress.

View Article and Find Full Text PDF

Quantitative structure-property relationship (QSPR) modeling has emerged as a pivotal tool in the field of medicinal chemistry and drug design, offering a predictive framework for understanding the correlation between chemical structure and physicochemical properties. Topological indices are mathematical descriptors derived from the molecular graphs that capture structural features and connectivity, playing a crucial role in QSPR analysis by quantitatively relating chemical structures to their physicochemical properties and biological activities. Lung cancer is characterized by its aggressive nature and late-stage diagnosis, often limiting treatment options and significantly impacting patient survival rates.

View Article and Find Full Text PDF

AI decision support systems can assist clinicians in planning adaptive treatment strategies that can dynamically react to individuals' cancer progression for effective personalized care. However, AI's imperfections can lead to suboptimal therapeutics if clinicians over or under rely on AI. To investigate such collaborative decision-making process, we conducted a Human-AI interaction study on response-adaptive radiotherapy for non-small cell lung cancer and hepatocellular carcinoma.

View Article and Find Full Text PDF

Role of PGC-1α in the proliferation and metastasis of malignant tumors.

J Mol Histol

January 2025

Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.

Malignant tumors are among the major diseases threatening human survival in the world, and advancements in medical technology have led to a steady increase in their detection rates worldwide. Despite unique clinical presentations across the spectrum of malignancies, treatment modalities generally adhere to common strategies, encompassing primarily surgical intervention, radiation therapy, chemotherapy, and targeted treatments. Uncovering the genetic elements contributing to cancer cell proliferation, metastasis, and drug resistance remains a pivotal pursuit in the development of novel targeted therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!