Effect of crosslinking on the physical and chemical properties of β-lactoglobulin (Blg) microgels.

J Colloid Interface Sci

Purdue University, Department of Food Science, West Lafayette, IN, USA; Whistler Center for Carbohydrate Research, West Lafayette, IN, USA. Electronic address:

Published: November 2017

Hypothesis: Microgels assembled from the protein β-lactoglobulin are colloidal structures with potential applications in food materials. Modifying the internal crosslinking within these microgels using enzymatic or chemical treatments should affect dissolution, swelling, and viscous attributes under strongly solvating conditions.

Experiments: Microgels were treated with citric acid, glutaraldehyde and transglutaminase to induce cross-linking or with tris(2-carboxyethyl)phosphine to reduce disulfide linkages. Change in hydrodynamic particle size due to acidic pH, alkaline pH, ionic strength, osmolyte concentration, ethanol, urea, sodium dodecyl sulfate, and reducing agents was evaluated by light scattering measurements. Changes in microgel nanomechanical properties were evaluated via force spectroscopic measurements in water.

Findings: Average microgel size increased ∼20% in alkaline pH and with ethanol contents above 10%, and decreased ∼20% with sucrose contents above 10%. Cross-linking by glutaraldehyde and transglutaminase prevented size increases in alkaline pH. Microgel plasticity and elastic modulus were unaffected by treatments. Microgels treated with glutaraldehyde were found to have much greater stability to urea, sodium dodecyl sulfate, and reducing agents when compared to other samples. Even without cross-linking, microgels remained stable against precipitation and dissolution over a wide range conditions, indicating their broad utility as colloidal stabilizers, texture modifiers or controlled release agents in food or other applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.06.061DOI Listing

Publication Analysis

Top Keywords

microgels treated
8
glutaraldehyde transglutaminase
8
urea sodium
8
sodium dodecyl
8
dodecyl sulfate
8
sulfate reducing
8
reducing agents
8
contents 10%
8
microgels
6
crosslinking physical
4

Similar Publications

Introduction: Inflammation is a vital immune response, tightly orchestrated through both biochemical and biophysical cues. Dysregulated inflammation contributes to chronic diseases, highlighting the need for novel therapies that modulate immune responses with minimal side effects. While several biochemical pathways of inflammation are well understood, the influence of physical properties such as substrate curvature on immune cell behavior remains underexplored.

View Article and Find Full Text PDF

Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated.

View Article and Find Full Text PDF

Blood coagulation is a highly regulated injury response that features polymerization of fibrin fibers to prevent the passage of blood from a damaged vascular endothelium. A growing body of research seeks to monitor coagulation in microfluidic systems but fails to capture coagulation as a response to disruption of the vascular endothelium. Here we present a device that allows compression injury of a defined segment of a microfluidic vascular endothelium and the assessment of coagulation at the injury site.

View Article and Find Full Text PDF

Cardiac tissue regeneration by microfluidic generated cardiac cell-laden calcium alginate microgels and mesenchymal stem cell extracted exosomes on myocardial infarction model.

Int J Biol Macromol

December 2024

Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

Regenerative medicine is one of the effective approaches for myocardial infarcted (MI) tissue due to the low capacity of heart for regeneration. However, cell therapy with local administration has shown poor cell retention in the targeted area and limited engraftment capacity at the intended location, resulting in inadequate tissue regeneration. The present study involves mesenchymal stem cell-derived exosomes and encapsulated cells in small and injectable calcium alginate microgels by a specialized microfluidic device to decrease inflammation and increase cell retention in the infarcted tissue.

View Article and Find Full Text PDF

Hierarchically Porous Microgels with Interior Spiral Canals for High-Efficiency Delivery of Stem Cells in Wound Healing.

Small

December 2024

Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

Chronic wound poses a serious risk to diabetic patients, primarily due to damaged skin microvasculature and prolonged inflammation at the wound site. Mesenchymal stem cell (MSC) therapy utilizing microgels as a cell delivery system has shown promise in promoting wound healing by enhancing cell viability and the secretion of bioactive factors. Retaining sufficient MSCs at injury sites is crucial for optimal therapeutic outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!