Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: To allow measurements of surface roughness to be made of coronary arteries using various imaging techniques, chemical processing, such as fixation and dehydration, is commonly used. Standard protocols suggest storing fresh biological tissue at -40°C. The aim of this study was to quantify the changes caused by freezing and chemical processing to the surface roughness measurements of coronary arteries, and to determine whether correction factors are needed for surface roughness measurements of coronary arteries following chemical processes typically used before imaging these arteries.
Methods: Porcine left anterior descending coronary arteries were dissected ex vivo. Surface roughness was then calculated following three-dimensional reconstruction of surface images obtained using an optical microscope. Surface roughness was measured before and after a freeze cycle to assess changes during freezing, after chemical fixation, and again after dehydration, to determine changes during these steps of chemical processing.
Results: No significant difference was caused due to the freeze cycle (p>0.05). There was no significant difference in the longitudinally measured surface roughness (Ra=0.99±0.39μm; p>0.05) of coronary arteries following fixation and dehydration either. However, the circumferentially measured surface roughness increased significantly following a combined method of processing (Ra=1.36±0.40, compared 1.98±0.27μm, respectively; p<0.05). A correction factor can compensate for the change Ra=Ra1+0.46in Ra due to processing of tissue, Where Ra, the corrected Ra, had a mean of 1.31±0.21μm.
Conclusions: Independently, freezing, fixation and dehydration do not alter the surface roughness of coronary arteries. Combined, however, fixation and dehydration significantly increase the circumferential, but not longitudinal, surface roughness of coronary arteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micron.2017.06.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!