Modulus- and Surface-Energy-Tunable Thiol-ene for UV Micromolding of Coatings.

ACS Appl Mater Interfaces

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Published: July 2017

Micromolding of UV-curable materials is a patterning method to fabricate microstructured surfaces that is an additive manufacturing process fully compatible with roll-to-roll systems. The development of micromolding for mass production remains a challenge because of the multifaceted demands of UV curable materials and the risk of demolding-related defects, particularly when patterning high-aspect-ratio features. In this research, a robust micromolding approach is demonstrated that integrates thiol-ene polymerization and UV LED curing. The moduli of cured thiol-ene coatings were tuned over 2 orders of magnitude by simply adjusting the acrylate concentration of a coating formulation, the curing completed in all cases within 10 s of LED exposure. Densely packed 50-μm-wide gratings were faithfully replicated in coatings ranging from soft materials to stiff highly cross-linked networks. Further, surface energy was modified with a fluorinated polymer, achieving a surface energy reduction of more than a half at a loading of 1 wt %, and enabling tall (100 μm) defect-free patterns to be attained. The demolding strengths of microstructured coatings were compared using quantitative peel testing, showing its decrease with decreasing surface energy, coating modulus, and grating height. This micromolding process, combining tunability in thermomechanical and surface properties, makes thiol-ene microstructured coatings attractive candidates for roll-to-roll manufacture. As a demonstration of the utility of the process, superhydrophobic surfaces are prepared using the system modified by the fluorinated polymer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b06339DOI Listing

Publication Analysis

Top Keywords

surface energy
12
modified fluorinated
8
fluorinated polymer
8
microstructured coatings
8
micromolding
5
coatings
5
modulus- surface-energy-tunable
4
thiol-ene
4
surface-energy-tunable thiol-ene
4
thiol-ene micromolding
4

Similar Publications

We demonstrate unprecedented control and enhancement of thermal radiation using subwavelength conical membranes of silicon nitride. Based on fluctuational electrodynamics, we find that the focusing of surface phonon-polaritons along these membranes enhances their far-field thermal conductance by three orders of magnitude over the blackbody limit. Our calculations reveal a non-monotonic dependence of the thermal conductance on membrane geometry, with a characteristic radiation plateau emerging at small front widths due to competing effects of the polariton focusing and radiative area.

View Article and Find Full Text PDF

To prevent water scarcity, wastewater must be discharged to the surface or groundwater after being treated. Another method is to reuse wastewater in some areas after treatment and evaluate it as much as possible. In this study, it is aimed to recover and reuse the caustic (sodium hydroxide, NaOH) used in the recycling of plastic bottles from polyethylene terephthalate (PET) washing wastewater.

View Article and Find Full Text PDF

Cloud radiative effect dominates variabilities of surface energy budget in the dark Arctic.

Sci Rep

January 2025

Lawrence Livermore National Laboratory, Livermore, CA, USA.

Climate models simulate a wide range of temperatures in the Arctic. Here we investigate one of the main drivers of changes in surface temperature: the net surface heat flux in the models. We show that in the winter months of the dark Arctic, there is a more than two-fold difference in the net surface heat fluxes among the models, and this difference is dominated by the downward infrared radiation from clouds.

View Article and Find Full Text PDF

Droplets impact on sparse microgrooved non-wetting surfaces.

Sci Rep

January 2025

Department of Mechanics, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, People's Republic of China.

Droplets impinging on sparse microgrooved polydimethylsiloxane (PDMS) surfaces with different solid fractions was experimentally investigated. First, wettability and stability of droplets on these surfaces was analyzed. The advancing and receding contact angles were found to have a large difference between in the longitudinal direction and in the transverse one, which could be attributed to the anisotropy of the micropatterned surfaces.

View Article and Find Full Text PDF

We report the fabrication and characterization of a Bi(III) oxide/polypyrrole (BiO/Ppy) nanocomposite thin film optoelectronic photodetector synthesized by a simple one-pot method. The nanocomposite consists of spherical BiO nanoparticles embedded in a Ppy matrix, forming a porous structure with a high surface area. The XRD analysis reveals that the BiO nanoparticles have a poly-crystalline nature with a crystal size of 40 nm and an optical bandgap of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!