Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491123 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180113 | PLOS |
Food Chem
January 2025
Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India.
In the background of antioxidation properties of selenium (Se) in plants, the role of nano‑selenium (Se-NPs) was justified in the modulation of Capsicum fruit ripening. In our study, exogenous application of 8 mg L Se-NPs on fruits through 7 days (D) of postharvest storage regulated decay rate, water loss and fruit coat firmness. Se-NPs recovered fruit coat damages with reduction of ion leakage, lipid oxidation, and accumulation of polyamines.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
DNA methylation is an epigenetic modification process that can alter the functionality of a genome. It has been reported to be a key regulator of fruit ripening. In this study, the DNA methylation changes of CpG islands of ethylene signaling genes regulated by 1-methylcyclopropene (1-MCP) during ripening and senescence of tomato fruit were detected.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
The Australian Wine Research Institute, P.O. Box 46, Glenside (Adelaide), SA 5065, Australia.
Winegrapes exposed to environmental wildfire smoke during ripening can be identified through analysis of volatile phenols and phenolic glycosides. While elevated concentrations of these smoke marker compounds in grapes have been shown to be predictive of composition and smoke flavor in young wines, recent research has demonstrated that not every wine produced from smoke-exposed grapes will inevitably have discernible smoke flavor when assessed as young wine 6 weeks after bottling. This is supported by anecdotal reports from wine producers that wines that do not appear noticeably smoky when young become noticeably smoky during aging.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Horticulture, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
Willd. is an evergreen tree native to South Africa. Historically, the tree has been used for the treatment of various diseases and has been scientifically found to have promising pharmacological effects.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
A nuclear-localized cysteine desulfhydrase, LCD1, plays a crucial role in mediating endogenous hydrogen sulfide production in tomatoes. However, the mechanism underlying the nuclear localization of SlLCD1 is not yet fully understood. In this study, it was found that SlLCD1 specifically interacted with nuclear import receptor importin α3 (SlIMPA3).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!