SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection.

Antioxid Redox Signal

Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania, Naples, Italy .

Published: March 2018

Significance: Oxidative stress represents the common hallmark of pathological conditions associated with cardiovascular disease (CVD), including atherosclerosis, heart failure, hypertension, aging, diabetes, and other vascular system-related diseases. The sirtuin (SIRT) family, comprising seven proteins (SIRT1-SIRT7) sharing a highly conserved nicotinamide adenine dinucleotide (NAD)-binding catalytic domain, attracted a great attention for the past few years as stress adaptor and epigenetic enzymes involved in the cellular events controlling aging-related disorder, cancer, and CVD. Recent Advances: Among sirtuins, SIRT1 and SIRT6 are the best characterized for their protective roles against inflammation, vascular aging, heart disease, and atherosclerotic plaque development. This latest role has been only recently unveiled for SIRT6. Of interest, in recent years, complex signaling networks controlled by SIRT1 and SIRT6 common to stress resistance, vascular aging, and CVD have emerged.

Critical Issues: We provide a comprehensive overview of recent developments on the molecular signaling pathways controlled by SIRT1 and SIRT6, two post-translational modifiers proven to be valuable tools to dampen inflammation and oxidative stress at the cardiovascular level.

Future Directions: A deeper understanding of the epigenetic mechanisms through which SIRT1 and SIRT6 act in the signalings responsible for onset and development CVD is a prime scientific endeavor of the upcoming years. Multiple "omic" technologies will have widespread implications in understanding such mechanisms, speeding up the achievement of selective and efficient pharmacological modulation of sirtuins for future applications in the prevention and treatment of CVD. Antioxid. Redox Signal. 28, 711-732.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824538PMC
http://dx.doi.org/10.1089/ars.2017.7178DOI Listing

Publication Analysis

Top Keywords

sirt1 sirt6
20
signaling pathways
8
cardiovascular disease
8
oxidative stress
8
vascular aging
8
controlled sirt1
8
sirt1
5
cvd
5
sirt6
5
sirt6 signaling
4

Similar Publications

Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context.

View Article and Find Full Text PDF
Article Synopsis
  • The review summarizes long-term research by the Saint-Petersburg Institute of Bioregulation and Gerontology on the biological activity of peptide bioregulators and compares findings from domestic and international studies.
  • Russian scientists have taken the lead in using buccal epithelium as a diagnostic marker for age-related diseases, highlighting their significant contributions in this field.
  • The research reveals that peptides from the epiphysis can enhance melatonin secretion and influence circadian rhythms in the elderly by regulating gene expression and reducing harmful protein synthesis, suggesting their potential as therapeutic agents for age-related issues.
View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by rapid growth, resistance to chemotherapy, and complex genetic changes, with sirtuins playing crucial roles in its progression.
  • Each sirtuin has distinct effects, with SIRT1 promoting tumor survival under stress, SIRT2 inhibiting cell proliferation, and SIRT3 showing effects against tumor growth through mitochondrial regulation; SIRT4 and SIRT5 also contribute by influencing metabolic pathways.
  • The review argues for the importance of targeting sirtuin activity in therapy development to improve treatment outcomes and combat the challenges posed by PDAC.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is an aging-related neurodegenerative disorder that results in progressively impaired memory and is often associated with amyloid plaques. Previous studies implicate the deacetylases SIRT1 and SIRT2 in regulating the processing of amyloid precursor protein (APP). Here, we investigated whether APP is regulated by the related deacetylase SIRT6, which shows aging-associated decreases in activity.

View Article and Find Full Text PDF

Purpose: Caloric restriction (CR), the permanent or periodic reduction of caloric intake, is a dietary strategy that promotes longevity and healthspan, yielding multiple beneficial effects, such as improved insulin sensitivity and mitochondrial function, decreased body weight, and mitigation of cardiometabolic risk factors. The purpose of our study was the in silico and in vitro assessment of the effects exerted by pinostilbene on SIRT1 and SIRT6 compared to those of resveratrol, a known activator of these enzymes.

Materials And Methods: Molecular docking was carried out to determine the interactions with SIRT1 and SIRT6 and, further, the effect of pinostilbene on their activity was tested in vitro to evaluate if it parallels resveratrol's effects regarding SIRT activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!