Although organic small molecule spiro-OMeTAD is widely used as a hole-transport material in perovskite solar cells, its limited electric conductivity poses a bottleneck in the efficiency improvement of perovskite solar cells. Here, a low-cost and easy-fabrication technique is developed to enhance the conductivity and hole-extraction ability of spiro-OMeTAD by doping it with commercially available benzoyl peroxide (BPO). The experimental results show that the conductivity increases several orders of magnitude, from 6.2×10  S cm for the pristine spiro-OMeTAD to 1.1×10  S cm at 5 % BPO doping and to 2.4×10  S cm at 15 % BPO doping, which considerably outperform the conductivity of 4.62×10  S cm for the currently used oxygen-doped spiro-OMeTAD. The fluorescence spectra suggest that the BPO-doped spiro-OMeTAD-OMeTAD layer is able to efficiently extract holes from CH NH PbI and thus greatly enhances the charge transfer. The BPO-doped spiro-OMeTAD is used in the fabrication of perovskite solar cells, which exhibit enhancement in the power conversion efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201700872DOI Listing

Publication Analysis

Top Keywords

perovskite solar
16
solar cells
16
benzoyl peroxide
8
bpo doping
8
spiro-ometad
6
peroxide efficient
4
efficient dopant
4
dopant spiro-ometad
4
perovskite
4
spiro-ometad perovskite
4

Similar Publications

The controlled growth of two-dimensional (2D) perovskite atop three-dimensional (3D) perovskite films reduces interfacial recombination and impedes ion migration, thus improving the performance and stability of perovskite solar cells (PSCs). Unfortunately, the random orientation of the spontaneously formed 2D phase atop the pre-deposited 3D perovskite film can deteriorate charge extraction owing to energetic disorder, limiting the maximum attainable efficiency and long-term stability of the PSCs. Here, we introduce a meta-amidinopyridine ligand and the solvent post-dripping step to generate a highly ordered 2D perovskite phase on the surface of a 3D perovskite film.

View Article and Find Full Text PDF

Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells.

Materials (Basel)

January 2025

Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.

View Article and Find Full Text PDF

Laminated Two-Terminal All-Perovskite Tandem Solar Cells with Transparent Conductive Adhesives.

ACS Appl Mater Interfaces

January 2025

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.

Established sequential deposition of multilayer two-terminal (2T) all-perovskite tandem solar cells possesses challenges for fabrication and limits the choice of materials and device architecture. In response, this work represents a lamination process based on a transparent and conductive adhesive that interconnects the wide-bandgap (WBG) perovskite top solar cell and the narrow-bandgap (NBG) perovskite bottom solar cell in a monolithic 2T all-perovskite tandem solar cell. The transparent conductive adhesive (TCA) layer combines Ag-coated poly(methyl methacrylate) microspheres with an optical adhesive.

View Article and Find Full Text PDF

A scalable solar-driven photocatalytic system for separated H and O production from water.

Nat Commun

January 2025

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, China.

Solar-driven photocatalytic water splitting offers a sustainable pathway to produce green hydrogen, yet its practical application encounters several challenges including inefficient photocatalysts, sluggish water oxidation, severe reverse reactions and the necessity of separating produced hydrogen and oxygen gases. Herein, we design and develop a photocatalytic system composed of two separate reaction parts: a hydrogen evolution cell containing halide perovskite photocatalysts (MoSe-loaded CH(NH)PbBrI) and an oxygen evolution cell containing NiFe-layered double hydroxide modified BiVO photocatalysts. These components are bridged by a I/I redox couple to facilitate electron transfer, realizing efficient overall water splitting with a solar-to-hydrogen conversion efficiency of 2.

View Article and Find Full Text PDF

Hole transport layer (HTL)-free carbon-based perovskite solar cells (C-PSCs) own outstanding potential for commercial applications due to their attractive advantages of low cost and superior stability. However, the abundant defects and mismatched energy levels at the interface of the perovskite/carbon electrode severely limit the device efficiency and stability. Constructing a 2D layer on the surface of 3D perovskite films to form 2D/3D heterojunctions has been demonstrated to be an effective method of passivating surface defects and optimizing the energy level alignment in almost all kinds of PSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!