Respiratory microbiota and lower respiratory tract disease.

Expert Rev Anti Infect Ther

f Institut de Recerca Pediatrica , Hospital de Sant Joan de Dèu, Barcelona , Spain.

Published: July 2017

The respiratory airways harbor a complex succession of ecological niches with distinct but related bacterial communities. Particular challenges of respiratory microbiome research have led to limited scientific output compared to other human microbiomes. Areas covered: In this review, we summarize the current state of knowledge of the bacterial respiratory microbiome, with a particular focus on associations between the respiratory microbiome and lower respiratory tract conditions. Expert commentary: There is growing evidence that the respiratory microbiome is associated with lower respiratory infectious diseases and related conditions. Most respiratory microbiome reports are metataxonomic cross-sectional or case-control studies with relatively small sample sizes. Large, prospective projects with metatranscriptomics or metabolomics approach are needed to unravel the effect of the respiratory microbiome on health-related conditions. Moreover, standardization in sampling, library preparation, sequencing techniques and data analysis should be encouraged.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14787210.2017.1349609DOI Listing

Publication Analysis

Top Keywords

respiratory microbiome
24
lower respiratory
12
respiratory
11
respiratory tract
8
microbiome
6
respiratory microbiota
4
microbiota lower
4
tract disease
4
disease respiratory
4
respiratory airways
4

Similar Publications

Rare constituents of the nasal microbiome contribute to the acute exacerbation of chronic rhinosinusitis.

Inflamm Res

January 2025

Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.

Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

Asthma is a chronic inflammatory respiratory disease that affects millions globally and poses a serious public health challenge. Current therapeutic strategies, including corticosteroids, are constrained by variable patient responses and adverse effects. In this study, a polyphenolic extract derived from the Tibetan medicinal plant Trimen (SRT) was employed and shown to improve experimentally (ovalbumin + cigarette smoke, OVA + CS) induced asthma in rats.

View Article and Find Full Text PDF

Background: Gut microbiome on predicting clinical responses to immune checkpoint inhibitors (ICIs) has been discussed in detail for decades, while microecological features of the lower respiratory tract within advanced non-small-cell lung cancer (NSCLC) are still relatively vague.

Methods: During this study, 26 bronchoalveolar lavage fluids (BALF) from advanced NSCLC participants who received immune checkpoint inhibitor monotherapy were performed 16S rRNA sequencing and untargeted metabolome sequencing to identify differentially abundant microbes and metabolic characteristics. Additionally, inflammatory cytokines and chemokines were also launched in paired BALF and serum samples by immunoassays to uncover their underlying correlations.

View Article and Find Full Text PDF

Aging-induced Alternation in the Gut Microbiota Impairs Host Antibacterial Defense.

Adv Sci (Weinh)

January 2025

Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.

Older individuals experience increased susceptibility and mortality to bacterial infections, but the underlying etiology remains unclear. Herein, it is shown that aging-associated reduction of commensal Parabacteroides goldsteinii (P. goldsteinii) in both aged mice and humans critically contributes to worse outcomes of bacterial infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!