Introduction: Advanced glycation endproducts (AGEs) are well-known inflammatory mediators, which are recognized by immune cells through their corresponding receptor RAGE and have been shown to participate in the pathophysiology of a variety of acute as well as chronic inflammatory diseases. Nevertheless, no data are available on the aftermath of AGE recognition on immune cells.

Materials And Methods: We used the monocytic cell line MonoMac6 as well as primary human monocytes for double stimulation experiments. We measured secreted as well as intracellular levels of TNF-α using ELISA and flow cytometry. In addition, gene expression of surface receptors (RAGE and TLR4) and TNF were measured by qPCR.

Results: Stimulation with AGE leads to a dose-dependent induction of self- and cross-tolerance in both primary monocytes as well as the MonoMac6 cell line. The AGE tolerance depended neither on a decreased expression of RAGE or TLR4, nor on a decrease of TNF-α expression. Nevertheless, intracellular TNF-α was decreased, hinting towards a posttranscriptional regulation.

Conclusion: High levels of AGEs are capable to activate immune cells at first, but induce a secondary state of hypo-responsiveness in these cells. Based on the origin of its causal agent, we propose this phenomenon to be "metabolic tolerance".

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00011-017-1076-9DOI Listing

Publication Analysis

Top Keywords

advanced glycation
8
glycation endproducts
8
self- cross-tolerance
8
rage tlr4
8
endproducts induce
4
induce self-
4
cross-tolerance monocytes
4
monocytes introduction
4
introduction advanced
4
endproducts ages
4

Similar Publications

Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.

View Article and Find Full Text PDF

Acid sphingomyelinase downregulation alleviates diabetic myocardial fibrosis in mice.

Mol Cell Biochem

January 2025

Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory, Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.

Increased activity of acid sphingomyelinase (ASMase) has been linked to diabetes and organ fibrosis. Nevertheless, the precise influence of ASMase on diabetic myocardial fibrosis and the corresponding molecular mechanisms remain elusive. In this study, we aim to elucidate whether ASMase contributes to diabetic myocardial fibrosis through the phosphorylation mediated by MAPK, thereby culminating in the development of diabetic cardiomyopathy (DCM).

View Article and Find Full Text PDF

(), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE-receptor for AGEs (RAGE) interaction. IPA (0.

View Article and Find Full Text PDF

Urinary stones (urolithiasis) have been categorized as kidney stones (renal calculus), ureteric stones (ureteral calculus and ureterolith), bladder stones (bladder calculus), and urethral stones (urethral calculus); however, the mechanisms underlying their promotion and related injuries in glomerular and tubular cells remain unclear. Although lifestyle-related diseases (LSRDs) such as hyperglycemia, type 2 diabetic mellitus, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, and cardiovascular disease are risk factors for urolithiasis, the underlying mechanisms remain unclear. Recently, heat shock protein 90 (HSP90) on the membrane of HK-2 human proximal tubular epithelium cells has been associated with the adhesion of urinary stones and cytotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!