A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing Foraminal Stenosis in the Cervical Spine: A Comparison of Three-Dimensional Computed Tomographic Surface Reconstruction to Two-Dimensional Modalities. | LitMetric

Study Design: Retrospective radiographic study.

Objective: The optimal radiographic modality for assessing cervical foraminal stenosis is unclear. Determination on conventional axial cuts is made difficult due in part to the complex, oblique orientation of the cervical neuroforamen. The utility of 3-dimensonal (3D) computed tomography (CT) reconstruction in improving neuroforaminal assessment is not well understood. The objective of this study is to determine inter-rater variability in grading cervical foraminal stenosis using 3 different CT imaging modalities: 3D CT surface reconstructions (3DSR), 2D sagittal oblique multiplanar reformations (2D-SOMPR), and conventional 2D axial CT imaging.

Methods: Pretreatment CT scans of 25 patients undergoing surgery for cervical spondylotic radiculopathy were analyzed at 2 levels: C5-C6 and C6-C7. Simple interrater agreement and kappa-Fleiss coefficients were calculated for each imaging modality and stenosis grade. Image reviewers (attending spine surgeon, attending neuroradiologist, spine fellow) interpreted each CT scan in 3 different formats: axial, 2D-SOMPR, and 3DSR. Four cervical foramina at 2 spinal levels were graded as normal (no stenosis), mild (≤25% stenosis), moderate (25%-50% stenosis), or severe (>50% stenosis).

Results: Across all imaging modalities, interrater reliability was fair when grading foraminal stenosis (κ < 0.4). Agreement was lowest for the axial images (κ = 0.119) and highest for the 3D CT reconstructions (κ = 0.334). 2D-SOMPR images also led to improved interrater reliability when compared with axial images (κ = 0.255).

Conclusion: Grading cervical foraminal stenosis using conventional axial CT imaging is difficult with low interrater reliability. CT modalities that provide a circumferential view of the cervical foramen, such as 2D-SOMPR and 3D CT reconstruction, had higher rates of interobserver reliability in grading foraminal stenosis than conventional axial cuts, with 3D having the highest. As these 3D reconstructions can be obtained at no additional cost or radiation exposure over a conventional CT scan, and because they can provide useful information in determining levels being considered for surgical decompression, we recommend they be utilized when evaluating cervical foramina.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476357PMC
http://dx.doi.org/10.1177/2192568217699190DOI Listing

Publication Analysis

Top Keywords

foraminal stenosis
24
conventional axial
16
cervical foraminal
12
interrater reliability
12
stenosis
10
cervical
9
axial cuts
8
grading cervical
8
imaging modalities
8
cervical foramina
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!