Through practice, people are able to integrate a secondary sequence (e.g., a stimulus-based sequence) into a primary sequence (e.g., a response-based sequence), but it is still controversial whether the integrated sequences lead to better learning than only the primary sequence. In the present study, we aimed to investigate the effects of a sequence that integrated space and color sequences on early and late learning phases (corresponding to effector-independent and effector-dependent learning, respectively) and how the effects differed in the integrated and primary sequences in each learning phase. In the task, the participants were required to learn a sequence of button presses using trial-and-error and to perform the sequence successfully for 20 trials ( × task). First, in the baseline task, all participants learned a non-colored sequence, in which the response button always turned red. Then, in the learning task, the participants were assigned to two groups: a colored sequence group (i.e., space and color) or a non-colored sequence group (i.e., space). In the colored sequence, the response button turned a pre-determined color and the participants were instructed to attend to the sequences of both location and color as much as they could. The results showed that the participants who performed the colored sequence acquired the correct button presses of the sequence earlier, but showed a slower mean performance time than those who performed the non-colored sequence. Moreover, the slower performance time in the colored sequence group remained in a subsequent transfer task in which the spatial configurations of the buttons were vertically mirrored from the learning task. These results indicated that if participants explicitly attended to both the spatial response sequence and color stimulus sequence at the same time, they could develop their spatial representations of the sequence earlier (i.e., early development of the effector-independent learning), but might not be able to enhance their motor representations of the sequence (i.e., late development of the effector-dependent learning). Thus, the undeveloped effector-dependent representations in the colored sequence group directly led to a long performance time in the transfer sequence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5468433PMC
http://dx.doi.org/10.3389/fpsyg.2017.00937DOI Listing

Publication Analysis

Top Keywords

sequence
24
colored sequence
20
sequence group
16
task participants
12
non-colored sequence
12
performance time
12
learning
9
sequence color
8
primary sequence
8
space color
8

Similar Publications

Mechanism of hsa_circ_0069443 promoting early pregnancy loss through ALKBH5/FN1 axis in trophoblast cells.

iScience

January 2025

Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.

Studies have shown that circRNAs play an important regulatory role in trophoblast function and embryonic development. Based on sequencing and functional experiments, we found that hsa_circ_0069443 can regulate the function of trophoblast cells, and its presence is found in the exosomes secreted by trophoblast cells. It is known that exosomes mediate the interaction between the uterus and embryo, which is crucial for successful pregnancy.

View Article and Find Full Text PDF

A subunit vaccine Ag85A-LpqH focusing on humoral immunity provides substantial protection against tuberculosis in mice.

iScience

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.

The importance of humoral immunity in combating TB has gained extensive recognition. In this study, a subunit vaccine named Ag85A-LpqH (AL) was prepared by fusing the antigen Ag85A proved to induce robust T cell immune responses, and LpqH was shown to produce protective antibodies. The prevention and BCG prime-boost mouse models were established to test the vaccine efficacy.

View Article and Find Full Text PDF

Primitive to visceral endoderm maturation is essential for mouse epiblast survival beyond implantation.

iScience

January 2025

Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.

The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.

View Article and Find Full Text PDF

Introduction: Glioma is the most common primary malignant brain tumor. Despite advances in surgical techniques and treatment regimens, the therapeutic effects of glioma remain unsatisfactory. Immunotherapy has brought new hope to glioma patients, but its therapeutic outcomes are limited by the immunosuppressive nature of the tumor microenvironment (TME).

View Article and Find Full Text PDF

Introduction: Locally advanced pancreatic cancer (LAPC) is a borderline unresectable malignancy that presents significant treatment challenges. The management of LAPC remains a complex issue, particularly in patients who are not eligible for surgical resection.

Case: Here, we report the case of a 60-year-old woman diagnosed with LAPC through pathological biopsy who subsequently underwent targeted immunotherapy following the failure of a gemcitabine, oxaliplatin, and S-1 (G&S) chemotherapy regimen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!