We propose electrocorticographic temporal alteration mapping (ETAM) for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs) within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM), which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases) were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS) procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8%) and specificity (94.3%) in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%). These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466988PMC
http://dx.doi.org/10.3389/fnins.2017.00326DOI Listing

Publication Analysis

Top Keywords

motor cortex
16
alteration mapping
12
electrocorticographic temporal
8
temporal alteration
8
movement-related cortical
8
cortical potentials
8
mapping etam
8
cortex localization
8
mapping
6
motor
5

Similar Publications

Introduction: Amyotrophic lateral sclerosis (ALS) is a rare, devastating neurodegenerative disease that affects upper and lower motor neurons, resulting in muscle atrophy, spasticity, hyperreflexia, and paralysis. Inflammation plays an important role in the development of ALS, and associated with rapid disease progression. Current observational studies indicate the thinning of cortical thickness in patients with ALS is associated with rapid disease progression and cognitive changes.

View Article and Find Full Text PDF

Improved motor imagery skills after repetitive passive somatosensory stimulation: a parallel-group, pre-registered study.

Front Neural Circuits

January 2025

Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.

Introduction: Motor-imagery-based Brain-Machine Interface (MI-BMI) has been established as an effective treatment for post-stroke hemiplegia. However, the need for long-term intervention can represent a significant burden on patients. Here, we demonstrate that motor imagery (MI) instructions for BMI training, when supplemented with somatosensory stimulation in addition to conventional verbal instructions, can help enhance MI capabilities of healthy participants.

View Article and Find Full Text PDF

Background: It is well known that dysfunction of thalamocortical circuity generates the motor signs that lead to distinct disease processes and prognoses in Parkinson's disease (PD). This study aimed to leverage ultrahigh-field magnetic resonance imaging (MRI) to identify the connectivity alterations of thalamocortical circuity and clarify their relation to motor signs in early PD.

Methods: Patients with early-stage PD (n=55) and healthy controls (HCs, n=56) were recruited from March 2022 to July 2023.

View Article and Find Full Text PDF

Background: Rapid eye movement sleep behavior disorder (RBD) is associated with pathological α-synuclein deposition and may have different damage directions due to α-synuclein spreading orientations. Recent functional imaging studies of Parkinson's disease (PD) with RBD have identified abnormalities in connectivity, but effective connectivity (EC) for this altered orientation is understudied. Here, we aimed to explore altered intrinsic functional connectivity (FC) and EC in PD patients with probable RBD (pRBD).

View Article and Find Full Text PDF

Amygdala-centered fusional connections characterized nonmotor symptoms in Parkinson's disease.

Cereb Cortex

January 2025

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Mathematical Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, P. R. China.

The importance of nonmotor symptoms in understanding the pathogenesis of the heterogeneity of Parkinson's disease has been highlighted. However, the validation of specific brain network biomarkers in nonmotor symptom subtypes is currently lacking. By performing a new approach to compute functional connectivity with structural prior using magnetic resonance imaging, the present study computed both functional connectivity and fusional connectivity features in the nonmotor symptom subtypes of Parkinson's disease, one characterized by cognitive impairment with late onset and the other depression with early onset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!