Cancer incidence attributable to air pollution in Alberta in 2012.

CMAJ Open

Affiliations: Department of Cancer Epidemiology and Prevention Research (Poirier, Grundy, Khandwala, Friedenreich, Brenner), CancerControl Alberta, Alberta Health Services; Department of Oncology (Friedenreich, Brenner) and Department of Community Health Sciences (Friedenreich, Brenner), Cumming School of Medicine, University of Calgary, Calgary, Alta.

Published: June 2017

Background: The International Agency for Research on Cancer has classified outdoor air pollution (fine particulate matter [PM2.5]) as a Group 1 lung carcinogen in humans. We aimed to estimate the proportion of lung cancer cases attributable to PM2.5 exposure in Alberta in 2012.

Methods: Annual average concentrations of PM2.5 in 2011 for 22 communities across Alberta were extracted from the Clean Air Strategic Alliance Data Warehouse and were population-weighted across the province. Using 7.5 µg/m3 and 3.18 µg/m3 as the annual average theoretical minimum risk concentrations of PM2.5, we estimated the proportion of the population above this cut-off to determine the population attributable risk of lung cancer due to PM2.5 exposure.

Results: The mean population-weighted concentration of PM2.5 for Alberta in 2011 was 10.03 µg/m3. We estimated relative risks of 1.02 and 1.06 for theoretical minimum risk PM2.5 concentration thresholds of 7.5 µg/m3 and 3.18 µg/m3, respectively. About 1.87%-5.69% of incident lung cancer cases in Alberta were estimated to be attributable to PM2.5 exposure.

Interpretation: Our estimate of attributable burden is low compared to that reported in studies in other areas of the world owing to the relatively low levels of PM2.5 recorded in Alberta. Reducing PM2.5 emissions in Alberta should continue to be a priority to help decrease the burden of lung cancer in the population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498315PMC
http://dx.doi.org/10.9778/cmajo.20160040DOI Listing

Publication Analysis

Top Keywords

lung cancer
16
pm25
9
air pollution
8
cancer cases
8
attributable pm25
8
annual average
8
concentrations pm25
8
µg/m3 318
8
318 µg/m3
8
theoretical minimum
8

Similar Publications

Circular RNAs (circRNAs), as a class of noncoding RNA molecules with a circular structure exhibit high stability and spatiotemporal-specific expression, making them ideal cancer biomarkers for liquid biopsy. Herein, a new photoelectrochemical (PEC) biosensor for a highly sensitive circRNA assay in the whole blood of lung cancer patients was designed based on CRISPR/Cas13a-programmed Cu nanoclusters (Cu NCs) and a -scheme covalent organic framework/silver sulfide (T-COF/AgS) composite. This -scheme T-COF/AgS composite accelerates electron transfer and produces an excellent initial photocurrent.

View Article and Find Full Text PDF

Lung cancer is the third most prevalent cancer, following breast cancer in women and prostate cancer in men. However, it remains the leading cause of cancer-related mortality. As treatment options have advanced, the significance of accurate diagnosis has increased, enabling targeted and more personalized therapeutic treatments.

View Article and Find Full Text PDF

Parathyroid carcinoma (PC) is one of the rarest malignant neoplasms of the human endocrine system, with a prevalence of approximately 0.005% of all oncological diseases. Despite its indolent course, PC generally relapses in about 40%-60% of cases.

View Article and Find Full Text PDF

Application of nanomaterials in precision treatment of lung cancer.

iScience

January 2025

Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China.

Lung cancer remains one of the most prevalent and lethal malignancies worldwide, characterized by high mortality rates due to its aggressive nature, metastatic potential, and drug resistance. Despite advancements in conventional therapies, their efficacy is often limited by systemic toxicity, poor tumor specificity, and the emergence of resistance mechanisms. Nanomedicine has emerged as a promising approach to address these challenges, leveraging the unique physicochemical properties of nanomaterials to enhance drug delivery, reduce off-target effects, and enable combination therapies.

View Article and Find Full Text PDF

Background: Recent patient studies have linked higher immune cell doses with worse quality of life and survival. For thoracic radiotherapy, heart dose is a major contributor to the effective dose to immune cells (EDIC).

Purpose: This study investigates heart and immune cell doses for plans optimized using a cardiac-sparing knowledge-based planning (KBP) model and the impact of carefully crafted beam geometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!