The purpose of the study was to determine if the intratrunk coordination of axial rotation exhibited by individuals with spinal fusion for adolescent idiopathic scoliosis (SF-AIS) during running varies from healthy individuals and how the coordination differs among adjacent trunk-segment pairs. Axial rotations of trunk segments (upper, middle, lower trunk) and pelvis were collected for 11 SF-AIS participants and 11 matched controls during running. Cross-correlation determined the phase lag between the adjacent segment motions. The coupling angle was generated using the vector coding method and classified into 1 of the 4 major, modified coordination patterns: in-phase, anti-phase, superior, and inferior phase. Two-way, mixed-model ANCOVA was employed to test phase lag, cross-correlation r, and time spent in each major coordination pattern. A significantly lower phase lag for SF-AIS was observed compared with controls. Qualitatively, there was a tendency that SF-AIS participants spent less time in anti-phase for middle-lower trunk and lower trunk-pelvis coordinations compared to controls. Phase lag and anti-phase time was significantly increased from cephalic to caudal segment pairs, regardless of group. In conclusion, SF-AIS participants and controls displayed similar patterns of intra-trunk coordination; however, the spinal fusion hindered decoupling of intra-trunk motions particularly between the lower trunk-pelvic motion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/jab.2017-0085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!