Synthesis and the Optical and Electrochemical Properties of Indium(III) Bis(arylimino)acenaphthene Complexes.

Inorg Chem

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.

Published: July 2017

Aryl bis(imino)acenaphthenes (Ar-BIANs) are well-established rigid and sterically bulky diimine ligands, which are redox-noninnocent and versatile π-acceptors due to their low-lying π* orbitals and are frequently used to bind transition metals. However, the coordination chemistry of Ar-BIAN ligands to main group elements is not as well-developed as that of their transition metal counterparts. In particular, there are no comprehensive studies describing the spectroscopic and electrochemical properties of main group Ar-BIAN complexes. Herein, we report the synthesis and full characterization of a series of new indium(III) Ar-BIAN complexes, bearing 2,6-dialkyl (1b and 2b), 4-nitro (3b), and 4-dimethylamino (4b) groups at the aryl-diimine part of the ligand. Their optical and electrochemical properties have been revealed by UV-vis spectroscopy and cyclic voltammetry, respectively. Additionally, DFT calculations were performed to gain insights into the nature of the properties displayed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.7b00539DOI Listing

Publication Analysis

Top Keywords

electrochemical properties
12
optical electrochemical
8
main group
8
ar-bian complexes
8
synthesis optical
4
properties
4
properties indiumiii
4
indiumiii bisaryliminoacenaphthene
4
bisaryliminoacenaphthene complexes
4
complexes aryl
4

Similar Publications

Unraveling the Trade-Off Effect of Pyrogenic Carbons Between Biopseudocapacitors and Bioconductors During Anaerobic Methanogenesis.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.

Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.

View Article and Find Full Text PDF

With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.

View Article and Find Full Text PDF

Cobalt regulation biocathode with sulfate-reducing bacteria for enhancing the reduction of antimony and the removal of sulfate in a microbial electrolysis cell simultaneously.

Environ Res

January 2025

School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:

Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.

View Article and Find Full Text PDF

Electrical activation of periodate by nano-zero-valent cobalt/nitrogen-doped carbon for sulfisoxazole degradation: Insights into rapid electron transfer mechanisms.

J Colloid Interface Sci

January 2025

Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Periodate (PI) activation via three-dimensional electrochemical (E) is a promising approach for degrading sulfisoxazole (SIZ), while the scarcity of active sites significantly limits the efficient electron-transfer rate. Herein, we synthesized multiple strongly active zero-valent cobalt (Co) nanoparticles encapsulated in nitrogen-doped carbon (NC) shells through Co-potassium chloride (KCl) doping pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8) to induce the rapid electron transfer pathways (ETP). Specifically, molten KCl doping provides confined structures for Co with a diameter of 12.

View Article and Find Full Text PDF

Improving the Electrochemical Properties of SiO Anode for High-Performance Lithium-Ion Batteries by Magnesiothermic Reduction and Prelithiation.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

For lithium-ion batteries, silicon monoxide is a potential anode material, but its application is limited by its relatively large irreversible capacity loss, which leads to its low initial Coulombic efficiency (ICE). In this study, we conduct a two-step reaction for the formation of silicon oxide-based materials, including a magnesiothermic reduction of SiO with Mg, followed by the solid-state lithiation of silicon oxide with LiCO. Our results demonstrate that Mg can reduce SiO to Si and form MgSiO, while LiCO reacts with SiO to form LiSiO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!