The durability issues of Pt catalyst should be resolved for the commercialization of proton exchange membrane fuel cells. Nanocrystal structures with high-index facets have been recently explored to solve the critical durability problem of fuel cell catalysts as Pt catalysts with high-index facets can preserve the ordered surfaces without change of the original structures. However, it is very difficult to develop effective and practical synthetic methods for Pt-based nanostructures with high-index facets. The current study describes a simple one-pot synthesis of self-assembled dendritic Pt nanostructures with electrochemically active and stable high-index facets. Pt nanodendrites exhibited 2 times higher ORR activity and superior durability (only 3.0 % activity loss after 10 000 potential cycles) than a commercial Pt/C. The enhanced catalytic performance was elucidated by the formation of well-organized dendritic structures with plenty of reactive interfaces among 5 nm-sized Pt particles and the coexistence of low- and high-index facets on the particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201700852 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!