Consistency in quality correction factors for ionization chamber dosimetry in scanned proton beam therapy.

Med Phys

Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200, Brussels, Belgium.

Published: September 2017

Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (k ). Pencil beam scanning (PBS) systems cannot approximate reference conditions using a single spot. However, dose distributions requested in TRS-398 can be reproduced with PBS using a combination of spots. This study aims to demonstrate, using Monte Carlo (MC) simulations, that k factors computed/measured for broad beams can be used with scanned beams for similar reference dose distributions with no additional significant uncertainty.

Methods: We consider the Alfonso formalism usually employed for nonstandard photon beams. To approach reference conditions similar as IAEA TRS-398 and the associated dose distributions, PBS must combine many pencil beams with range or energy modulation and shaping techniques that differ from those used in passive systems (broad beams). In order to evaluate the impact of these differences on k factors, ionization chamber responses are computed with MC (Geant4 9.6) in three different proton beams, with their corresponding quality factors (Q), producing a 10 × 10 cm field with a flat dose distribution for (a) a dedicated scanned pencil beam (Q ), (b) a hypothetical proton source (Q ), and (c) a double-scattering beam (Q ). The tested ionization chamber cavities are a 2 × 2 × 0.2 mm³ air cavity, a Roos-type ionization chamber, and a Farmer-type ionization chamber.

Results And Discussion: Ranges of Q , Q , and Q are consistent within 0.4 mm. Flatnesses of dose distributions are better than 0.5%. Calculated kQpbs,Qhypfpbs,fref is 0.999 ± 0.002 for the air cavity and the Farmer-type ionization chamber and 1.001 ± 0.002 for the Roos-type ionization chamber. The quality correction factors kQpbs,Qdsfpbs,fref is 0.999 ± 0.002 for the Farmer-type and Roos-type ionization chambers and 1.001 ± 0.001 for the Roos-type ionization chamber.

Conclusion: The Alfonso formalism was applied to scanned proton beams. In our MC simulations, neither the difference in the beam profiles (scanned beam vs hypothetical beam) nor the different incident beam energies influenced significantly the beam correction factors. This suggests that ionization chamber quality correction factors in scanned or broad proton beams are indistinguishable within the calculation uncertainties provided dose distributions achieved by both modalities are similar and compliant with the TRS-398 reference conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.12434DOI Listing

Publication Analysis

Top Keywords

ionization chamber
28
correction factors
20
dose distributions
20
quality correction
16
reference conditions
16
proton beams
16
roos-type ionization
16
ionization
11
beam
10
beams
9

Similar Publications

Establishing In-vivo brain microdialysis for comparing concentrations of a variety of cortical neurotransmitters in the awake rhesus macaque between different cognitive states.

J Neurosci Methods

January 2025

Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, 37077 Goettingen, Germany.

Background: Neuronal activity is modulated by behavior and cognitive processes. The combination of several neurotransmitter systems, acting directly or indirectly on specific populations of neurons, underlie such modulations. Most studies with non-human primates (NHPs) fail to capture this complexity, partly due to the lack of adequate methods for reliably and simultaneously measuring a broad spectrum of neurotransmitters while the animal engages in behavioral tasks.

View Article and Find Full Text PDF

Assessment of the Performance of the Dose Calibrator Used in Radioactivity Measurement.

Indian J Nucl Med

November 2024

Center for Research and Production of Radioisotopes, Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute (VINATOM), Da Lat City, Lam Dong Province, Vietnam.

Aims: This study aimed to evaluate the principal technical characteristics of a well-type gas-filled ionization chamber dose calibrator used in measuring radiopharmaceutical activity, namely accuracy, repeatability, and linearity. Furthermore, this work also explored the correlation between the device's response and the position and volume of the radiopharmaceutical I-131.

Materials And Methods: Experimental measurements were conducted on the ATOMLAB 500 dose calibrator using NIST traceable Cs-137 source to determine the accuracy and repeatability.

View Article and Find Full Text PDF

Challenges in extracting and characterizing electrolytes from automotive lithium-ion cells.

Anal Chim Acta

January 2025

University Regensburg, Institute of Analytical Chemistry, Universitätsstrasse 31, 93053, Regensburg, Germany. Electronic address:

Background: The demand for lithium-ion cells in the automotive industry is rapidly growing due to the increasing electrification of the transportation sector. The electrolyte composition plays a critical role in determining the lifetime and performance of these large-format cells. Additionally, advancements in this field are leading to frequent changes in both electrode materials and electrolyte formulations.

View Article and Find Full Text PDF

Purpose: The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions.

View Article and Find Full Text PDF

On the correction factors for small field dosimetry in 1.5T MR-linacs.

Phys Med Biol

January 2025

Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, Athens, Attica, 11527, GREECE.

Clinical dosimetry in the presence of a 1.5T magnetic field is challenging, let alone in case small fields are involved. The scope of this study is to determine a set of relevant correction factors for a variety of MR-compatible detectors with emphasis on small fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!