Malignant glioma is a clinically formidable disease. It commonly leads to death within 5 years after diagnosis. Physicians are often baffled since the inevitable diffuse invasion deteriorates clinical outcomes rapidly. Therefore, cancerous infiltration presents a foremost challenge to all therapeutic strategies on glioblastoma multiforme (GBM). Previously, we demonstrated that nicotinic acid (NA) possesses a brand new function by targeting F-actin stress fibers. By treating HEK293 or NIH3T3 cells with a certain concentration of NA, the F-actin stress fiber was significantly disassembled. This notable finding inspired us to explore NA further in cancer cell lines, such as GBM cells, since F-actin stress fibers are the critical foundation of cell migration, proliferation and numerous essential signaling pathways. Expectedly, we observed that optimized concentrations of NA, 3.5 mM and 7.0 mM, detached U251 from culturing petri dishes. Moreover, 7.0 mM of NA was capable of disrupting the leading-edge assembly. Additionally, we collected paraffin specimens from 85 GBM patients and evaluated the expression pattern of paxillin. Notably, we found that discernable paxillin signals were detected in 67 out of 85 samples. Given that leading edge is critical for cancer cell migration, we propose that NA treatment may be developed into a potential therapy for malignant glioma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562096 | PMC |
http://dx.doi.org/10.3892/or.2017.5757 | DOI Listing |
Sci Adv
January 2025
Department of Biochemistry, Université de Genève, CH-1211 Genève, Switzerland.
regenerates one head when cut, but how forces shaping the head are coordinated remains unclear. Soft compression of 's head-regenerating tissues induces the formation of viable, two-headed animals. Compression creates new topological defects in the supracellular orientational order of muscular actin fibers, associated with additional heads.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
January 2025
Annexins are a family of multifunctional calcium-dependent and phospholipid-binding proteins that are widely distributed in the plant kingdom. They have a highly conserved evolutionary history that dates back to single-celled protists. Plant annexins, as soluble proteins, can flexibly bind to endomembranes and plasma membranes, exhibiting unique calcium-dependent and calcium-independent characteristics.
View Article and Find Full Text PDFAPL Bioeng
March 2025
Blue Mountains World Interdisciplinary Innovation Institute (bmwi3), Blue Mountains, New South Wales, Australia.
Here, we report on the first part of a two-part experimental series to elucidate spatiotemporal cytoskeletal remodeling, which underpins the evolution of stem cell shape and fate, and the emergence of tissue structure and function. In Part I of these studies, we first develop protocols to stabilize microtubules exogenously using paclitaxel (PAX) in a standardized model murine embryonic stem cell line (C3H/10T1/2) to maximize comparability with previously published studies. We then probe native and microtubule-stabilized stem cells' capacity to adapt to volume changing stresses effected by seeding at increasing cell densities, which emulates local compression and tissue template formation during development.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan.
Background/objectives: Actin plays a crucial role not only in the cytoplasm, but also in the nucleus, influencing various cellular behaviors, including cell migration and gene expression. Recent studies reveal that nuclear actin dynamics is altered by cellular stresses, such as DNA damage; however, the effect of heat shock on nuclear actin dynamics, particularly in the nucleolus, remains unclear. This study aims to elucidate the contribution of nucleolar actin to cellular responses under heat shock conditions.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!