Numerous studies in animals and humans have established that oxytocin (OT) reduces anxiety. In rats, the prelimbic (PL) subregion of the medial prefrontal cortex (mPFC) is among the brain areas implicated in the anxiolytic actions of OT. However, questions remain about the anatomical and receptor specificity of OT and its mechanism of action. Here we assessed whether the regulation of anxiety by mPFC OT is restricted to the PL subregion and evaluated whether oxytocin receptor (OTR) activation is required for OT to have an anxiolytic effect. We also examined whether OT interacts with GABA in the mPFC to reduce anxiety and investigated the extent to which OT in the mPFC affects activation of mPFC GABA neurons as well as neuronal activation in the amygdala, a primary target of the mPFC which is part of the neural network regulating anxiety. We found that OT reduced anxiety-like behavior when delivered to the PL, but not infralimbic or anterior cingulate subregions of the mPFC. The anxiolytic effect of OT in the PL mPFC was blocked by pretreatment with an OTR, but not a vasopressin receptor, antagonist as well as with a GABA receptor antagonist. Lastly, administration of OT to the PL mPFC was accompanied by increased activation of GABA neurons in the PL mPFC and altered neuronal activation of the amygdala following anxiety testing. These results demonstrate that OT in the PL mPFC attenuates anxiety-related behavior and may do so by engaging GABAergic neurons which ultimately modulate downstream brain regions implicated in anxiety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997257 | PMC |
http://dx.doi.org/10.1016/j.neuropharm.2017.06.024 | DOI Listing |
Neurochem Res
January 2025
Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAR in freely moving mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Neuroscience Institute at JFK Medical Center, Edison, NJ, USA; Hackensack Meridian School of Medicine, Nutley, NJ, USA.
Background: Disease-associated microglia (DAM), which cluster around Aβ plaques, represent a significant pathological hallmark of Alzheimer's disease (AD) and play a complex role in influencing neuroinflammation, mediating synapse loss, and participating in the phagocytic clearance of Aβ. Nonetheless, the precise mechanisms by which microglial activation extends beyond the traditional M1 and M2 classifications, encompassing a diverse spectrum of states, especially for DAM, closely intertwined with physiological and pathological conditions under Alzheimer's circumstances remain elusive.
Method: Here, we first combined biochemical techniques and bioinformatic analysis to test and quantify the expression of GABAR1 in both human and mouse AD models.
PLoS One
January 2025
Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway.
Propofol and ketamine are widely used general anaesthetics, but have different effects on consciousness: propofol gives a deeply unconscious state, with little or no dream reports, whereas vivid dreams are often reported after ketamine anaesthesia. Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist, while propofol is a γ-aminobutyric-acid (GABAA) receptor positive allosteric modulator, but these mechanisms do not fully explain how these drugs alter consciousness. Most previous in vitro studies of cellular mechanisms of anaesthetics have used brain slices or neurons in a nearly "comatose" state, because no "arousing" neuromodulators were added.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common metabolism-related multisystem clinical disorder, often accompanied by a high comorbidity of mild cognitive impairment (MCI). Increasing evidence suggests that the amygdala is crucial in cognitive processing during metabolic dysfunction. Nevertheless, the role of the amygdala in the neural mechanisms of MASLD with MCI (MCI_MASLD) remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!