The innate immune system is the first line for organisms defense against microbial infection, and NOD-like receptors (NLRs) protein family is an important member of innate immunity effector molecules. It has been proved that NLRs are located in the endochylema and can senses of microbial products. NOD1 is one of the representatives of this family, it has been proved that in mammals, NOD1 can distinguish a specific muropeptide (G-d-glutamyl-meso-diaminopimelic acid, iE-DAP) which was derived from bacterial peptidoglycans. However, the NOD-mediated intracellular recognition of microorganisms remains largely uncharacterized in teleost fishes. In this study, we use miiuy croaker (Miichthys miiuy) as a model to determine NOD1 can response to the infection of Gram-negative bacteria and it is the receptor that can recognize of iE-DAP by LRRs domain, it can activate the NF-κB signaling pathway through recruit RIP2 to induce inflammatory response in teleost fishes. Results showed that NOD1 can recognize the components of Gram-negative bacteria and activate inflammatory response to resistance of bacterial infection. Our study can improve the knowledge on immune system of fishes and provide a theoretical basis for the study of prevention and treatment of fish diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dci.2017.06.012 | DOI Listing |
Vet Res
January 2025
Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity.
View Article and Find Full Text PDFItal J Pediatr
January 2025
The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China.
Human adenovirus is an infectious agent that causes respiratory infections in adults and children. It has been found that immunocompromised children are highly susceptible to this pathogen, as it can swiftly evolve into severe pneumonia with multiple sequelae. Due to the lack of immunity in children, the body's response mechanisms to innate and acquired immunity are specialized.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
School of Economics and Management, Beijing Forestry University, Beijing 100083, China.
OTU domain-containing protein 3 (OTUD3) is a crucial deubiquitinase that exhibits significant expression differences across various disease models. OTUD3 plays a role in regulating biological functions such as apoptosis, inflammatory responses, cell cycle, proliferation, and invasion in different cell types. By deubiquitinating key substrate proteins, OTUD3 is involved in essential physiological and pathological processes, including innate antiviral immunity, neural development, neurodegenerative diseases, and cancer.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China. Electronic address:
Fibrinogen-related domain (FReD) containing proteins are an evolutionarily conserved immune gene family characterized by the C-terminal fibrinogen (FBG) and diverse N-terminal domains. To understand the complexity of this family in crustaceans, we performed genome screening and identified 43 full-length FReDs encoding genes in Litopenaeus vannamei. Structural classification analysis revealed these putative FReDs could be divided into six types, including two reported types (LvFReDI and II) and four new types (LvFReDIII-VI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!