Purpose: In patients with macular telangiectasia Type 2, blue light reflectance imaging reveals an oval, parafoveal area in the macula that has increased reflectance compared with its surrounding. Here, we examine how dark adaptation and photobleaching can affect the blue light reflectance imaging pattern.
Methods: Prospective study of patients with macular telangiectasia enrolled in the MacTel Natural History Observation Study. After dark adaptation, a sequence of images was obtained with a confocal scanning laser ophthalmoscope at 488 nm. Change of reflectance patterns was analyzed over time.
Results: Eighteen eyes from 16 patients were analyzed. Initially, increased reflectivity in the parafoveal area resulted in higher gray values compared with the paramacular surrounding on blue light reflectance imaging. The difference between parafoveal and paramacular reflectance intensity decreased steadily during imaging, from 17.7 gray-value units (95% confidence interval: 12.1-23.2) down to 2.8 (95% confidence interval: -0.8 to 6.5) after around 30 seconds, and recovered after 5 minutes of dark adaptation.
Conclusion: A bleaching effect was evident in our study. Understanding these changes is important for both diagnosis and assessment of blue light reflectance phenotype in patients with macular telangiectasia and could also provide further insights into the pathophysiology of this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/IAE.0000000000001754 | DOI Listing |
Adv Mater
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
MXenes, have been considered as a new generation anode material in lithium-ion batteries for lower lithium-ion diffusion barriers and superior conductivity. Unfortunately, their structures are prone to aggregation and stacking, hindering further shuttle of lithium ions and electrons, resulting in lower discharge capacity. Therefore, the introduction of interlayer spacers for the preparation of MXene-based hybrids has attracted much attention.
View Article and Find Full Text PDFSmall
January 2025
Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China.
Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.
View Article and Find Full Text PDFWe have employed a triazine-based conjugated polymer network (CPN) for the selective detection of hypochlorite in a semi-aqueous environment. CPNs have been widely employed in gas capture, separation, and adsorption, but the fluorescent properties of CPNs possessing extensive π-conjugated systems tend to be unexplored. Herein, we report the photophysical properties of the CPN and investigate its sensing capability towards hypochlorite.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Water Management and Treatment Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
This study introduces a sustainable biological approach for synthesizing silver nanoparticles (AgNPs) using Conocarpus seeds, aimed at improving the adsorption and photocatalytic degradation of methylene blue (MB) in wastewater treatment. The photocatalytic efficiency of AgNPs, synthesized under varying concentrations of silver nitrate (AgNO) and pH levels, was evaluated, together with the effectiveness of a photocatalytic reactor. The synthesized samples were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and atomic force microscopy (AFM).
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun, 130117, China.
Background: Adrenaline and glucose are essential biomarkers in human body for maintaining metabolic balance. Abnormal levels of adrenaline and glucose are associated with various diseases. Therefore, it is important to design portable, on-site devices for rapid adrenaline and glucose analysis to safeguard health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!