Mannose receptor is considered as a hallmark of M2-oriented tumor-associated macrophages (TAMs), but its utility in TAMs was rarely reported. Therefore, deoxymannose (DM), a high-affinity ligand of mannose receptor, was labeled with near-infrared dye cyanine 7 (Cy7), and its feasibility of targeted imaging on TAMs was evaluated in vitro and in vivo. The Cy7-DM was synthesized, and its binding affinity with induced TAMs in vitro, whole-body imaging in xenograft tumor mouse model in vivo, and the cellular localization in dissected tissues were evaluated. We demonstrated a high uptake of Cy7-DM by induced M2 macrophages and TAMs in tumor tissues. In vivo near-infrared live imaging visualized abundant TAMs in tumor lesions instead of inflammatory sites by Cy7-DM imaging, and the quantity of Cy7-DM signals in tumors was significantly higher than that shown in inflammatory sites from 1 to 8 hours of imaging. Our results suggest that mannose could rapidly and specifically target TAMs and is a promising candidate for targeted diagnosis of tumor with rich TAMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470129PMC
http://dx.doi.org/10.1177/1536012116689499DOI Listing

Publication Analysis

Top Keywords

targeted imaging
8
tumor-associated macrophages
8
mannose receptor
8
tams
8
macrophages tams
8
tams tumor
8
inflammatory sites
8
imaging
5
imaging tumor-associated
4
macrophages cyanine
4

Similar Publications

Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Background: Food choices play a significant role in achieving glycemic goals and optimizing overall health for people with type 2 diabetes (T2D). Continuous glucose monitoring (CGM) can provide a comprehensive look at the impact of foods and other behaviors on glucose in real time and over the course of time. The impact of using a nutrition-focused approach (NFA) when initiating CGM in people with T2D is unknown.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2) positive gastric cancer (GC) shows a robust response to the combined therapy based HER2-targeted therapy. The application of these therapies is highly dependent on the evaluation of tumor HER2 status. However, there are many risks and challenges in HER2 assessment in GC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!