The reaction of iron(II) triflate with 6-tert-butyl-3-thiopyridazine (PnH) and 4-methyl-6-tert-butyl-3-thiopyridazine (PnH) respectively led to iron bis(diorganotrisulfide) complexes [Fe(PnSPn)](OTf) [R = H (1a) and Me (2a)]. The corresponding perchlorate complexes were prepared by using the iron(II) chloride precursor and the subsequent addition of 2 equiv of NaClO, giving [Fe(PnSPn)](ClO) [R = H (1b) and Me (2b)]. The compounds were fully characterized including single-crystal X-ray diffraction analysis. All four compounds exhibit nearly perfect octahedral geometries with an iron center coordinated by four nitrogen atoms from two PnSPn ligands and by two sulfur atoms of the central atom in the S unit. The diamagnetic complexes exhibit unusually high redox potentials for the Fe couple at E = 1.15 V (for 1a and 1b) and 1.08 V (for 2a and 2b) versus Fc/Fc, respectively, as determined by cyclic voltammetry. Furthermore, the source of the extra sulfur atom within the S unit was elucidated by isolation of C-N-coupled pyridazinylthiopyridazine products.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.7b00865DOI Listing

Publication Analysis

Top Keywords

atom unit
8
unusual c-n
4
c-n coupling
4
coupling reactivity
4
reactivity thiopyridazines
4
thiopyridazines efficient
4
efficient synthesis
4
synthesis iron
4
iron diorganotrisulfide
4
complexes
4

Similar Publications

The functional properties of tetraaryl compounds, M(aryl) (M = transition metal or group 14 element), are dictated not only by their common tetrahedral geometry but also by their central atom. The identity of this atom may serve to modulate the reactivity, electrochemical, magnetic, and optical behavior of the molecular species, or of extended materials built from appropriate tetraaryl building blocks, but this has not yet been systematically evaluated. Toward this goal, here we probe the influence of Os(IV), C, and Si central atoms on the spectroelectrochemical properties of a series of redox-active tetra(ferrocenylaryl) complexes.

View Article and Find Full Text PDF

The photocatalytic conversion of CO into products such as CH and CH poses a significant challenge due to the lengthy reaction steps and the high energy barrier involved. In this study, both benzothiadiazole (BTD) and hydroxyl groups (-OH) are introduced into cobalt-based polymerized porphyrinic network (PPN) through a C-C coupling reaction. This modification of orbital energy levels that strengthens the ability of gain electrons and facilitates the charge transfer in PPN.

View Article and Find Full Text PDF

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Discovery of bicyclic borane molecule BH.

Commun Chem

January 2025

The Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.

The discovery of fullerene following the synthesis of graphene marked a paradigm shift in chemistry. Here, we report the discovery of biycycloborane, arising from the synthesis of borophane (hydrogen boride). Uniquely, this synthesis method involves a decomposition mechanism rather than traditional atom-by-atom assembly, marking an unique approach to constructing complex borane structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!