The CRISPR/Cas9 genome engineering system has revolutionized biology by allowing for precise genome editing with little effort. Guided by a single guide RNA (sgRNA) that confers specificity, the Cas9 protein cleaves both DNA strands at the targeted locus. The DNA break can trigger either non-homologous end joining (NHEJ) or homology directed repair (HDR). NHEJ can introduce small deletions or insertions which lead to frame-shift mutations, while HDR allows for larger and more precise perturbations. Here, we present protocols for generating knockout cell lines by coupling established CRISPR/Cas9 methods with two options for downstream selection/screening. The NHEJ approach uses a single sgRNA cut site and selection-independent screening, where protein production is assessed by dot immunoblot in a high-throughput manner. The HDR approach uses two sgRNA cut sites that span the gene of interest. Together with a provided HDR template, this method can achieve deletion of tens of kb, aided by the inserted selectable resistance marker. The appropriate applications and advantages of each method are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608445PMC
http://dx.doi.org/10.3791/55903DOI Listing

Publication Analysis

Top Keywords

sgrna cut
8
selection-dependent independent
4
independent generation
4
generation crispr/cas9-mediated
4
crispr/cas9-mediated gene
4
gene knockouts
4
knockouts mammalian
4
mammalian cells
4
cells crispr/cas9
4
crispr/cas9 genome
4

Similar Publications

The non-ideal accuracy and insufficient selectivity of CRISPR/Cas9 systems is a serious problem for their use as a genome editing tool. It is important to select the target sequence correctly so that the CRISPR/Cas9 system does not cut similar sequences. This requires an understanding of how and why mismatches in the target sequence can affect the efficiency of the Cas9/sgRNA complex.

View Article and Find Full Text PDF

Terminal deoxynucleotidyl transferase (TdT) is a unique DNA polymerase capable of template-independent extension of DNA. TdT's DNA synthesis ability has found utility in DNA recording, DNA data storage, oligonucleotide synthesis, and nucleic acid labeling, but TdT's intrinsic nucleotide biases limit its versatility in such applications. Here, we describe a multiplexed assay for profiling and engineering the bias and overall activity of TdT variants with high throughput.

View Article and Find Full Text PDF

Terminal deoxynucleotidyl transferase (TdT) is a unique DNA polymerase capable of template-independent extension of DNA with random nucleotides. TdT's DNA synthesis ability has found utility in DNA recording, DNA data storage, oligonucleotide synthesis, and nucleic acid labeling, but TdT's intrinsic nucleotide biases limit its versatility in such applications. Here, we describe a multiplexed assay for profiling and engineering the bias and overall activity of TdT variants in high throughput.

View Article and Find Full Text PDF

Discovery and characterization of sgRNA-sequence-independent DNA cleavage from CRISPR/Cas9 in mouse embryos.

Genomics

May 2024

State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China. Electronic address:

The CRISPR/Cas9 system can induce off-target effects in programmed gene editing, but there have been few reports on cleavage detection and their affection in embryo development. To study these events, sgRNAs with different off-target rates were designed and compared after micro-injected into mouse zygotes, and γH2AX was used for DNA cleavage sites analysis by immunostaining and CUT&Tag. Although the low off-target sgRNA were usually selected for production gene editing animals, γH2AX immunofluorescence indicated that there was a relative DSB peak at 15 h after Cas9 system injection, and the number of γH2AX foci at the peak was significantly higher in the low off-target sgRNA-injected group than in the control group.

View Article and Find Full Text PDF

In genome engineering, the integration of incoming DNA has been dependent on enzymes produced by dividing cells, which has been a bottleneck toward increasing DNA insertion frequencies and accuracy. Recently, RNA-guided transposition with CRISPR-associated transposase (CAST) was reported as highly effective and specific in . Here, we developed Golden Gate vectors to test CAST in filamentous cyanobacteria and to show that it is effective in sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!