Over the last few decades, significant progress has been made to characterize the extent, severity, and underlying geochemical processes of groundwater arsenic (As) pollution in S/SE Asia. However, comparably little effort has been made to merge the findings into frameworks that allow for a process-based quantitative analysis of observed As behavior and for predictions of its long-term fate. This study developed field-scale numerical modeling approaches to represent the hydrochemical processes associated with an in situ field injection of reactive organic carbon, including the reductive dissolution and transformation of ferric iron (Fe) oxides and the concomitant release of sorbed As. We employed data from a sucrose injection experiment in the Bengal Delta Plain to guide our model development and to constrain the model parametrization. Our modeling results illustrate that the temporary pH decrease associated with the sucrose transformation and mineralization caused pronounced, temporary shifts in the As partitioning between aqueous and sorbed phases. The results also suggest that while the reductive dissolution of Fe(III) oxides reduced the number of sorption sites, a significant fraction of the released As was rapidly scavenged through coprecipitation with neo-formed magnetite. These secondary reactions can explain the disparity between the observed Fe and As behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b02097DOI Listing

Publication Analysis

Top Keywords

injection reactive
8
reactive organic
8
organic carbon
8
bengal delta
8
observed behavior
8
reductive dissolution
8
quantifying reactive
4
reactive transport
4
transport processes
4
processes governing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!